Issue |
ITM Web Conf.
Volume 61, 2024
The 9th International Symposium on Current Progress in Mathematics and Sciences 2023 (The 9th ISCPMS 2023) in conjunction with AUA Academic Conference on the Application of Artificial Intelligences and Data Sciences in a Modern Science for a Better Life
|
|
---|---|---|
Article Number | 01020 | |
Number of page(s) | 13 | |
DOI | https://doi.org/10.1051/itmconf/20246101020 | |
Published online | 10 January 2024 |
Portable glucose detector based on nickel oxide modified Screen Printed Carbon Electrode (SPCE)
1 Department of Physics, Faculty of Mathematics and Natural Sciences (FMIPA), Universitas Indonesia, Depok 16424, Indonesia
2 Department of Chemistry, Faculty of Mathematics and Natural Sciences (FMIPA), Universitas Indonesia, Depok 16424, Indonesia
3 UMG IdeaLab, South Jakarta 12930, Indonesia
* Corresponding author: djati.handoko@ui.ac.id
A portable and low-cost system prototype for glucose detector based on LMP91000EV M potentiostat has been created. Characterization of Screen-Printed Carbon Electrodes (SPCE) without modification (bare SPCE) and modified nickel oxide (NiO/SPCE) was carried out with a commercial potentiostat to see the effect of nickel oxide in detecting glucose. Through the electrochemical impedance spectroscopy method, the Rct value of 1,276.79 Ω is obtained for NiO/SPCE and 429.06 Ω for bare SPCE, so that NiO/SPCE has a slower electron transfer rate. Meanwhile, through the cyclic voltammetry method, the surface-active electrode area is 7.1×10-2cm2 for NiO/SPCE and 6.9×10-2 cm2 for bare SPCE, so that NiO/SPCE is more sensitive in detecting glucose. When the glucose concentration is varied, the Limit of Detection (LOD) and Limit of Quantitation (LOQ) values of NiO/SPCE are smaller, specifically 1.807 mM and 6.024 mM than bare SPCE, specifically 2.629 mM and 8.762 mM, so NiO/SPCE is more sensitive. When the scan rate is varied, the gradient value of NiO/SPCE is smaller, specifically -8.14×10-4 mA s/mV than bare SPCE, specifically -9.62×10-4 mA s/mV, so NiO/SPCE is not more sensitive. Next, comparing a prototype system that Trans Impedance Amplifier (TIA) gain is varied and a commercial potentiostat. As a result, the cyclic voltammogram per cycle on commercial potentiostat is more stable. The smaller the TIA gain on the system prototype, the more stable it is, this is because the noise that is amplified is getting smaller.
Key words: Cyclic voltammetry / electrochemical impedance spectroscopy / glucose / nickel oxide / screen printed electrode
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.