
Using Activity Metrics for DEVS Simulation Profiling

A. Muzy1,a, L. Capocchi2,b, and J.F. Santucci2,c

1UMR CNRS 6070 I3S Laboratory, Team Bio-info, Batiment Algorithme, Euclide-B - B.P. 121, 2000 Route
des Lucioles, 06903 Sophia Antipolis France.
2SPE UMR CNRS 6134 Laboratory, University of Corsica, Campus Grimaldi, 2050, Corte, France.

Abstract. Activity metrics can be used to profile DEVS models before and during the

simulation. It is critical to get good activity metrics of models before and during their

simulation. Having a means to compute a-priori activity of components (analytic activ-
ity) may be worth when simulating a model (or parts of it) for the first time. After, dur-

ing the simulation, analytic activity can be corrected using dynamic one. In this paper,

we introduce McCabe cyclomatic complexity metric (MCA) to compute analytic activity.

Both static and simulation activity metrics have been implemented through a plug-in of

the DEVSimPy (DEVS Simulator in Python language) environment and applied to DEVS
models.

1 Introduction

In [1], the concept of activity is introduced for DEVS models as the number of transition functions

executions. This quantitative-activity (QA) metric consists in counting the number of state-to-state

transitions in a model over some time interval. Activity metrics can be used to profile DEVS models.

Profiling consists of collecting statistics of a program execution. Usually, memory usage, durations,

frequency of calls, CPU usage and occupation are collected dynamically during program execution.

In DEVS modeling and simulation, profiling can be based on activity tracking metrics. In order to

analyze models, DEVS designers can correlate the number of transition functions with the CPU time

consumed by a transition function. These metrics are available only during the simulation (simulation
activity). However, having a means to compute a-priori activity of components (analytic activity) may

be worth when simulating a model (or parts of it) for the first time. After, during the simulation,

analytic activity can be corrected using dynamic one.

In this paper, we introduce McCabe cyclomatic complexity metric (MCA) (already discussed in [2])

to compute analytic activity. Both static and simulation activity metrics have been implemented

through a plug-in of the DEVSimPy (DEVS Simulator in Python language) environment and applied to

DEVS models. DEVSimPy [3] is being developed at the SPE laboratory of the University of Corsica

aA. Muzy is with the I3S Laboratory (UMR CNRS 6070), Team Bio-info, Batiment Algorithme, Euclide-B - B.P. 121, 2000

Route des Lucioles, 06903 Sophia Antipolis France, e-mail: Alexandre.Muzy@cnrs.fr
bL. Capocchi is with the SPE Laboratory (UMR CNRS 6134), University of Corsica, Quartier Grimaldi, 20250, Corte,

France, e-mail: capocchi@univ-corse.fr
cJ.F. Santucci is with the SPE Laboratory (UMR CNRS 6134), University of Corsica, Quartier Grimaldi, 20250, Corte,

France, e-mail: santucci@univ-corse.fr

DOI: 10.1051/
C© Owned by the authors, published by EDP Sciences, 2014

,
/

01001 (2014)
20140301001

ITM Web of Conferences 3
itmconf

This is an Open Access article distributed under the terms of the Creative Commons Attribution License .0, which permits 
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

4
 

Article available at http://www.itm-conferences.org or http://dx.doi.org/10.1051/itmconf/20140301001

http://www.itm-conferences.org
http://dx.doi.org/10.1051/itmconf/20140301001


and is an open source project under GPL v3 license. The DEVSimPy environment is based on the

PyDEVS API [4, 5]and is aims at facilitating researches in the SPE team in order to introduce and to

validate new concepts around DEVS formalism.

The paper is organized as follows: In the next section we present the activity metric definitions.

Section 3 deals with the implementation of these metrics in a new DEVSimPy plug-in called activity-
tracking. The obtained results which highlight the relationship between the different metrics are

presented in detail. Finally, some conclusions and perspectives are given.

2 Activity metrics definitions

It is critical to get good activity metrics of models before and during their simulation. These activity

metrics can be defined from metrics which have been defined in software engineering. A software

metric is usually used to determine the degree of maintainability of software products. However,

software metrics may be also used to predict the execution time consumption of functions or methods

of an object. In DEVS modeling and simulation context, these kinds of metrics can be employed to

evaluate the static and simulation activity of models.

2.1 Analytic activity metrics

Among the list of recommended metrics proposed in most of software engineering (Halstead com-

plexity [6], McCabe complexity [7], Coupling [8, 9], etc.) McCabe Complexity has been chosen

because: (i) it is one of the most popular metric in software engineering, (ii) it has strong implications

for software testing (iii) it can be used as an estimation of the time required for the execution of the

transition functions.

McCabe cyclomatic Complexity (MCC) [7] depends only on the decision structure of a program.

The cyclomatic number of a directed graph G, where each node corresponds to a block program, is a

graph-theoretic complexity:

MCC(G) = e − n + p

where e is the number of edges of the graph, n the number of nodes of the directed graph, and p
the number of connected components (exit nodes). This number depends on the number of linearly

independent paths, i.e., to the decision (if statement, conditional loops, etc.) structure of a program.

MCC usually correlates with the amount of work required to test a program, therefore it is used to

have a measure of the test complexity of a program. However, in DEVS modeling and simulation con-

text, MCC can be used at atomic function level considering the whole functions as a “block program”.

Indeed, the higher the number of independent decision paths, the more the system is expected to be

an event hub of high CPU activity: if the MCC of an atomic function is high, there is a significant

probability that the time spent in the function execution will be high too. Moreover, the MCC can be

considered as a metric which provides useful feedback to the DEVS designers during the modeling

phase.

For DEVS model, we can defined the McCabe Activity (MCA) of an atomic model AMi as:

MCAAMi = MCCδext + MCCδint (1)

01001-p.2

ITM Web of Conferences



2.2 Dynamic-based activity metrics

Dynamic-based metrics are considered during the execution of a program (simulation process). Con-

cerning the activity of DEVS models, the CPU user time computed and updated during the simulation

can be weighted by the quantitative activity.

In [10], the authors define the Quantitative-Activity (QA) of a system as “the number of discrete-

events received by the system, over a simulation time period.”. According to [11], a measure of

activity can be considered as a measure of information processing by counting over some time interval

the number of state-to-state transitions in a model. The QA is a notion defined at the modeling level

but quantified (tracked) during the simulation. In [12], the authors give the following definition of the

total activity for an atomic DEVS model AMi in a simulation time interval :

QAAMi = QAδint
AMi
+ QAδext

AMi
(2)

where QAδext
AMi

(resp. QAδint
AMi

) is the external (resp. internal) activity. The external (resp. internal)

activity is defined as a natural number equal to the sum of DEVS external (resp. internal) transitions

δext (resp. δint) execution. In [10], the activity of a coupled DEVS model CM is defined as the sum of

the total activity of its N atomic models QAAMi with i ∈ {1..N}:

QACM =
∑

i∈1..N

QAAMi (3)

Let consider the definition of activity given in equation 2 (resp. equation 3) as the definition of the

QA for an atomic (resp. coupled) model.

CPU user time is the time spent on the processor running your program’s code (or code in li-
braries) while system CPU time is the time spent running code in the operating system kernel on
behalf of your program. We are interested here in the CPU user time for an atomic DEVS model AMi:

CPUAMi = CPUδint
AMi
+CPUδext

AMi
(4)

3 Activity metrics implementation

DEVSimPy [3] is an open source project initiated by the modeling and simulation (M&S) team at SPE
(Sciences Pour l’Environnement) laboratory of the University of Corsica. The aim of this software is

to provide developers a collaborative M&S framework in the Python language. It uses the wxPython

library which is a blending of the wxWidgets C++ class library with Python. The DEVSimPy M&S

kernel is based on the PythonDEVS [4] API which offers a consistent and coherent set of classes in

order to construct a modular system and to achieve its hierarchical simulation. A plug-in manager is

proposed in order to expand the functionality of DEVSimPy allowing their enabling/disabling through

a dialog window.

Built upon definitions of activity metrics given in the previous section, DEVSimPy implements a

new plug-in called Activity Tracking (AT). This plug-in increases the handling of the recent definition

of the activity metrics thus opening new perspectives for the use of activity tracking in DEVS formal-

ism. DEVSimPy plug-in AT is generic and can be applied to any DEVS models. It does not require

any modification of the DEVS simulation algorithm and does not require any additional methods in

DEVS models to operate.

The DEVSimPy AT plug-in works the following way:

ACTIMS 2014

01001-p.3



Figure 1. Activation of AT plug-in in

DEVSimPy preferences.

Figure 2. AT plug-in configuration.

• The user enables the plug-in (see Figure 1) and chooses the set of DEVSimPy atomic models for

activity-tracking (see Figure 2). Before the simulation, the DEVS models are scanned in a recur-

sive way to collect all atomic models selected by the user in the plug-in interface. The external

and internal transition functions of all selected models are decorated with a new method aimed at

introducing at AT computation of these functions. A decorator function adds a new attribute to the

DEVS object in a dynamic way (offered by the Python language combined with the use of oriented

aspect programing) for each transition function. Moreover, knowing the code of the transition func-

tions for each selected atomic DEVS model, the associated MCA metric can be performed before

the simulation. In the same way, the coupling metrics can be computed from coupling relationships

between models inside all coupled models.

• The user can now performed the simulation of the model during which the QA metric is measured

by counting the number of DEVS transition functions executions.

While the simulation is running, the plug-in offers dynamically a table resuming the QA, MCA metrics

for each tracked model.

4 Experiments and results

The model used for the experiments contains 49 atomic models, 15 coupled models, 203 coupling, and

3 levels of encapsulation between coupled models. It models an asynchronous electrical machine [13]

employed for the diagnosis of eolian motors. We simulate this model during 1 second and we compute

01001-p.4

ITM Web of Conferences



for each tracked model (via the AT plug-in) the three metrics QA, WA and MCA. The two first ones

are computed over the simulation time while the MCC static metric is obtained before the simulation

starting.

Figure 3 depicts the 49 ordered models (identified by ID) according to the MCA metric. We can

note that there is a significant gap between the 16 models with the highest MCA value (75) and the 9

models with the lowest MCC value (2).

Figure 3. MCA static metric

computation.

In Figure 4, for each component i ∈ D, normalized activity metrics NQAi =
QAi

QAmax
(with QAmax =

max{QAi | i ∈ D}) is compared with normalized CPU metrics NCPUi =
CPUi

CPUmax
(with CPUmax =

max{CPUi | i ∈ D}). It can be seen that normalized activity corresponds mostly to normalized CPU.

Figure 4. Normalized QA and

normalized CPU metrics.

Figure 5 depicts the distribution of normalized NMCA
NCPU ratio. It can be seen that normalized NMCA

constitutes a good prediction for most of components. Correct prediction concerns 27 components

over the 49 ones. NMCA overestimates the other components. This means that for some components,

NMCA predicts they will have more activity. However, during the simulation, these overestimation

could be dynamically corrected.

One can ask: “Why would we still care about correcting the static activity as soon as we have

found the dynamic activity, instead of simply using the dynamic activity?”. Analytic activity can

depend on initial state but also on input event (for firespread a cell can receive water or not impacting

its simulation activity). Therefore, one can imagine that a component with a high analytic activity,

although the latter at the begining of the simulation does not exhibit a high level of activity, if it is

noticed an increase of activity during the simulation, one can anticipate the component would have a

high level of activity and take faster decision/prediction (e.g. for load-blancing in a case of distributed

simulation).

ACTIMS 2014

01001-p.5



Figure 5. Distribution of NCPU and NMCA
comparison.

5 Perspective: Routed activity

A route R can be defined as the set of port names (including component name to be unic) an output

event of a source atomic component crosses to reach a final receiver (another atomic component).

Substracting both original and final ports to the size of R thus corresponds to the number of hierarchy

levels crossed by an event. Then, each weighted transition (event) can integrate routing weight, i.e.,
the number of elements ri of each route Ri activating a transition type i. Each routing weight can be

determined at static level.

Input and output sets can be defined as X = {(p, v) | p ∈ Pin, v ∈ VX}, where Pin is the set of input

ports, and VX is the set of input values, and Y = {(p, v) | p ∈ Pout, v ∈ VY }, where Pout is the set of

output ports, and VY is the set of output values. To index external transition types, the notion of ports
can be used.

Figure 6. Hierarchical coupled model.

Figure 6 presents a hierarchical coupled model C1 involving C2, C3 and C4 DEVS coupled models

and A1, A2, A3 DEVS atomic models. In Figure 7, the associated dependency graph is used to compute

the coupling metric with the following rule: each time a coupled model is traversed by an event, the

coupling value is incremented by one (this corresponds to the number of hierarchy levels crossed by

an event along a route R as explained before). For example, the coupling metric between A3 and A1
models is four since the coupling between A1 and A2 is one.

01001-p.6

ITM Web of Conferences



Figure 7. Associated dependency graph.

6 Conclusions

In this paper, analytic and simulation activity metrics have been presented with a special attention

about their relationships. Concerning the analytic activity metric, the new McCabe cyclomatic com-

plexity activity metric (MCA) of a DEVS model are presented. For simulation activity metrics, the

well known quantitative-activity metric (QA) has been used in the context of profiling the activity

distribution over components. Both MCA and QA metrics have been compared with the user CPU
time of the DEVS transition functions are introduced. The MCA, QA and CPU metrics have been

implemented through a plug-in of the DEVSimPy (DEVS Simulator in Python language) environment

and applied to a case study. It is clear that MCA constitutes a good approximation allowing a-priori

estimation of component simulation overheads.

Main perspective concerns the improvement of the simulation algorithm using coupling metrics

and associating it with activity. Structure modification of abstract simulators will be guided by a

combination of both activity and the coupling metric associated with a parallel and distributed simu-

lation algorithm. DEVSimPy framework already integrates PyPDEVS API [5] thus exploiting parallel

and distributed features. We plan also to use an activity predition model [14] which requires that

the user provides (domain-specific) knowledge about how a specific model will use computational

resources when simulated with a specific simulator. Futhermore, in order to avoid the break of the

model-simulator abstraction (due the fact that the modeller needs some knowledge about the simu-

lator’s operation), we plan to explore the use of Domain-Specific Language (DSL) to automated the

construction of the activity prediction model.

References

[1] B.P. Zeigler, T.G. Kim, H. Praehofer, Theory of Modeling and Simulation, 2nd edn. (Academic

Press, Inc., Orlando, FL, USA, 2000), ISBN 0127784551

[2] Santucci, J.F., Capocchi, L., ITM Web of Conferences 1, 01001 (2013)

[3] L. Capocchi, J.F. Santucci, B. Poggi, C. Nicolai, DEVSimPy: A Collaborative Python Software
for Modeling and Simulation of DEVS Systems, in Enabling Technologies: Infrastructure for
Collaborative Enterprises (WETICE), 2011 20th IEEE International Workshops on (2011), pp.

170–175, ISSN 1524-4547

[4] J.S. Bolduc, H. Vangheluwe, Tech. Rep. MSDL-TR-2001-01, McGill University (2001),

http://msdl.cs.mcgill.ca/projects/projects/DEVS/

[5] Y.V. Tendeloo, Pypdevs package, http://msdl.cs.mcgill.ca/people/yentl

[6] M.H.M.H. Halstead, Elements of software science, Operating and programming systems se-

ries (Elsevier, New York, 1977), ISBN 0-444-00205-7, elsevier computer science library.,

http://opac.inria.fr/record=b1084731

ACTIMS 2014

01001-p.7



[7] T.J. McCabe, IEEE Trans. Software Eng. 2, 308 (1976)

[8] W.P. Stevens, G.J. Myers, L.L. Constantine, IBM Systems Journal 13, 115 (1974)

[9] F. Beck, S. Diehl, On the Congruence of Modularity and Code Coupling, in Proceedings of the
19th ACM SIGSOFT Symposium and the 13th European Conference on Foundations of Software
Engineering (ACM, New York, NY, USA, 2011), ESEC/FSE ’11, pp. 354–364, ISBN 978-1-

4503-0443-6, http://doi.acm.org/10.1145/2025113.2025162

[10] A. Muzy, D.R.C. Hill, What is new with the activity world view in modeling and simulation?
using activity as a unifying guide for modeling and simulation, in Simulation Conference (WSC),
Proceedings of the 2011 Winter (2011), pp. 2882–2894, ISSN 0891-7736

[11] X. Hu, B.P. Zeigler, Simulation 89, 435 (2013)

[12] A. Muzy, B.P. Zeigler, Activity-based Credit Assignment (ACA) in Hierarchical Sim-
ulation, in Proceedings of the 2012 Symposium on Theory of Modeling and Simula-
tion - DEVS Integrative M&S Symposium (Society for Computer Simulation International,

San Diego, CA, USA, 2012), TMS/DEVS ’12, pp. 5:1–5:8, ISBN 978-1-61839-786-7,

http://dl.acm.org/citation.cfm?id=2346616.2346621

[13] A. Yazidi, H. Henao, G.A. Capolino, F. Betin, L. Capocchi, Inter-turn short circuit fault de-
tection of wound rotor induction machines using Bispectral analysis, in Energy Conversion
Congress and Exposition (ECCE), 2010 IEEE (2010), pp. 1760–1765

[14] B. Chen, L. bing Zhang, X. cheng Liu, H. Vangheluwe, Journal of Zhejiang University SCI-

ENCE C 15, 13 (2014)

01001-p.8

ITM Web of Conferences


