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Use of genetic algorithms for solving problems of optimal cutting 
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Abstract. Cutting and packing problem is one of the most common optimization problem. Even a small space or 
material savings allow obtaining substantial advantages on an industrial scale. This paper proposes the genetic 
algorithm to solve this problem. It includes multipoint operators of crossing, mutation and selection. To use these 
operators, the special encoding of cutting card is applied, that can be transformed to the real coordinates by using 
decoder. This is a block typed decoder, which substitution strategy is “first-fit”. Efficiency of the solutions, obtained 
by the algorithm, depends on its parameters and on dimension of a task, but on average it decreases under the 
logarithmic law from dimension of a task. Temporary complexity of algorithm shows square dependence on the task 
dimension. 

1 Introduction 
Obtaining the effective solution of the packing 
rectangular objects problem in a two-dimensional 
container is one of the most important task of discrete 
optimization [1]. The necessity of finding efficient 
algorithms for this task is caused by its broad practical 
application in various branches of production. Even a 
small saving of resources while filling container and 
cutting material results in very tangible saving. 

Complexity of this packing problem is caused by its 
belonging to a class of NP difficult problems of 
combinatory optimization, i.e. there are no methods and 
algorithms that can find the exact solution for polynomial 
time. The studied task is NP difficult in strong sense, 
because it contains NP difficult task as its subtask [2, 3]. 

There are many different methods for solving 
orthogonal packing problems: methods of mathematical 
programming, branch and bound methods, asymptotically 
exact methods, single-pass and multi-pass heuristics, 
metaheuristic, etc [1, 4]. Most of the methods are 
developed in two directions. Methods of the first 
direction searches for locally optimal solutions in some 
neighborhood of the initial acceptable solutions. They use 
decoders, which restore the packing map and calculate 
objective function value.  

Another direction is development of the constructive 
methods. They deal with component-wise construction of 
the packaging, where method adds new components to 
the partially constructed pack while packing is not full. 
Offered in this paper method is the typical representative 
of the first class. 

 
 

2 Problem statement 
In this paper we consider the problem of packing 
rectangular objects in rectangular container 
(2 Dimensional Bin Packing Problem, 2DBP). Both 
value, the length (L) and the width (W) of the container 
are known. It is required to find the packing, which 
allows to pack the greatest number of items into one 
container. 

Thus, the input data for the selected task is a set of 
values: <W, L, m, w, l, e>, where W, L – the length and 
width of the rectangular container; m – number of 
rectangular elements for packing; w = (w1, w2, …, wi, …, 
wm) – the vector of widths of elements; l = (l1, l2, ..., li, ..., 
lm) – the vector of lengths of elements; � - the sign of 
possibility of changing elements orientation. Let's 
introduce a rectangular coordinate system, where OX axis 
matches to horizontal edge of the object and the axis OY - 
to vertical. Then task’s solutions can be represented as 
follows: <W, L, m, w, l, X, Y, E>, where �=(�1, �2, …, 
�i, …, �m), Y=(�1, �2,….�i, …, �m) – vectors of the 
minimum coordinates of elements; �=(�1, �2,….�i,…, �m), 
ei=1, if the element i is rotated on 90 degrees, else ei=0.  

The acceptability of rectangular packing (RP) means 
the fulfillment of the following conditions: 
- orthogonal arrangement of rectangles in the packing: 

for (xi , yi), i=1..m and any other vertex (xi
k
 , yi

k) of 
rectangle i: 

[(xi
k = xi) � (xi

k = xi + li)] � [(yi
k = yi) � (yi

k = yi + wi)] 

- not overlapping of rectangles: 
for i � j; i,j=1,..,m: 

[(xi � xj+lj) � (xj � xi+li)] � [(yi � yj+wj) � (yj � yi+wi)] 

 DOI: 10.1051/
C© Owned by the authors, published by EDP Sciences,

/

0 0  
201conf

Web of ConferencesITM
itm

0,
0 0 00

6 2
266

(201 )6

2016

8
8

This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits 
distribution, and reproduction in any medium, provided the original work is properly cited. 

��������	��
����

http://dx.doi.org/10.1051/itmconf/20160602008
http://www.itm-conferences.org
http://www.edpsciences.org
http://creativecommons.org/licenses/by/4.0


ITM Web of Conferences 

�
- not overlapping rectangles edges by elements: 

for every i=1..m: 

(xi � 0)�(yi � 0)�(yi+wi � W)�(yi+wi � L) 

An objective function can be represented as the ratio 
of the area occupied by the packaged objects to the area 
of the container: 

Q = (� Si)/(W�L) � 1, for i=1..m. 

3 Methods and algorithms 
Due to the task complexity, there are no methods to check 
every possible solution. Therefore, all existing 
approaches to this problem are to limit the set of checked 
solutions. Genetic algorithm, which applied in this paper, 
also uses this approach. 

Genetic algorithm is an evolutionary algorithm that 
includes a group of metaheuristics for finding and 
selecting the best solutions [5, 6]. Its core contains basic 
concepts of the evolution theory: inheritance, mutation, 
selection. The main idea is to construct some set of 
optimization problem’s solutions (population) and by 
getting through some transformations obtain new 
solutions instead of bad fit old ones. Storing information 
for multiple valid solutions at each iteration creates the 
effect of parallel computing, and increases the chances of 
finding the optimum. 

To evaluate the effectiveness of the obtained 
solutions, we should convert it to a form that would allow 
us to calculate the objective function value. For this 
purpose, a special decoder is used. There are different 
approaches for individual decoding, but decoders of 
block type are the most widespread. They use simple 
strategies: ”the next fit” (NF), “the first fit” (FF) and 
“best fit” (BF) [1–3, 7–14]. Based on the complexity of 
the strategies, in this work we apply the FF decoder. The 
decoder with the strategy “Substitution of first fit” 
(SubFF) at each step places the first matching object (its 
width does not exceed the width of the residual width of 
the block) in a partially filled block. If a suitable object is 
not found, it generates a free position of the next block 
and places there the first suitable object. Such algorithm 
(Sub(FF)) requires O(m2 log m) of time. 

 

 
Figure 1. Example of SubFF executing for the sequence: 
{1,2,3,4,5,6,7,8}. 
 

Decoder gets the priority list (replacement) of 
elements through input parameters and returns the 
packing - list of element’s minimum coordinates. Unlike 

most of the existing block decoders, which use packing 
block structure for encoding rectangular, and based on 
already compiled pair of block structures (one packing) 
calculate the coordinates of the packing elements, our 
decoder operates differently. It fills a container in 
accordance with the priority sequence of rectangular 
objects, thus it operates like tiered decoders, however in 
the search for solutions it uses the classic division into 
blocks. This decoder was developed to combine the 
advantages of the both decoder types: blocked and tiered. 
Generally, the block type decoder uses spatial resources 
more effectively, while a decoder of tiered type has less 
temporal complexity because it uses just the 
identifications sequence for filling container instead of 
block structures. 

In operation, the decoder stores information about 
free sections of the container, and when the element is 
installed in such section (it is installed to the lower left 
corner of the section), the decoder stores the coordinates 
of the lower left point of the element, and "forget" about 
the portion of the container, which was occupied. This is 
implemented through the list of block-levels. Block-level 
is a structure consisting of three coordinates: XLeft, YBegin, 
YEnd. XLeft – the coordinate of the left edge of the block 
level (the same as the coordinate of the left edge of the 
block); YBegin – coordinate of the lower edge of the block-
level (the same as the y-coordinate of the lower boundary 
of the free area in the block); YEnd – coordinate of the top 
edge of the block-level (the same as the y-coordinate of 
the upper boundary of the free area in the block). Figure 2 
shows decoder’s algorithm in more detail. 

 
Begin

Create the initial block-
level

Is block-level 
exist?

Container is full
Find unpacked item, 

 st1which matches to the 
block-level

Is item found? Pack the item

Create new block-level 
to the right of the itemNo

Yes

 st1Is there free space in 
block-level?

Expand block-levels 
that next to 1st

No

Yes

Find adjacent block-levels 
in one block

Is adjacent block-
levels found?

Merge adjacent 
block-levelsYes

No

level-block st1Delete the 

No

Yes

No

End

Yes

st1level becomes the -block nd2The 

 
Figure.2. Block diagram of decoder 

 
The solution in the population is a numerical 

sequence of object identifier for the package. The 
negative value of the element’s identifier in the solution 
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means the element’s rotation. Solution may contain 
several identical identifiers; it means that the packaging 
contains several identical elements. The number of 
repetitions of the elements is specified in the input 
parameters of the algorithm.  

In the beginning, the algorithm randomly generates 
the initial population, that is, each solution in the 
population is created as a sequence of random numbers. 
Further, operators of crossing, mutation and selection 
change solutions at each iteration. 

Crossover operator crosses pairs of solutions with a 
given probability. If task’s dimension is large, solutions 
may contain long sequences of numbers. Single-point 
crossover operator is not effective in this case. For these 
circumstances, n-point crossover operator was developed. 

By default, the crossing points are selected uniformly: 
the solution breaks into n length-equal ranges (where n – 
number of crossing points), and each crossing point gets 
out of the range corresponding to it. If crossing operator 
forms solution, in which the number of an element 
occurrences exceeds the maximum permissible value, 
operator will replace redundant elements with any other 
remained ones. 

The developed crossing operator has several operating 
modes: 
1) classic n-point. The number of crossing points n is 
specified by the user. In this mode, each solution in the 
list of new solutions formed by the crossing of two old 
solutions at n points. 
2) gradually increasing number of crossing points. In this 
mode, after each crossing of two solutions, obtained 
solutions are stored in the list of new solutions. Thus, if 
the number of crossing point is n, the list of new solutions 
will contain new solutions formed by crossing of two old 
solutions in 1,2,3, ..., and n points. This mode allows you 
to get more different solutions, and it should increase the 
probability of finding more effective packing, however, 
this mode has a higher time complexity. 
3) mixed mode with the specified ratio (default is 30%). 
This mode combines the first two modes, so you can get 
an expanded set of solutions by using the second mode, 
but only with a given probability, to reduce the 
computation time. 

Obviously, to get a better solution, you need to check 
more different solutions. Therefore, the crossover 
operator has a special mode in which the count of 
crossing points is selected randomly and closer to the top 
of the solutions. Experimentally it was found that the 
crossing points located at the beginning of the solution, 
allow to obtain the better solutions. Probably, the reason 
is that the first packaged elements mainly define the 
configuration of the entire package. 

Mutation operator makes random changes in 
solution, allowing you to avoid "getting stuck" in a local 
extremum. Implemented operator consists of two parts. 
The first part carries out a swap of the elements within 
solution, the second part performs rotation of elements by 
90 degrees about its center in the plane of the container. 
For the same reasons as in the crossing operator, here we 
use multi-points mutation. 

Selection operator is probably the most important 
part of genetic algorithm. It performs analysis of 

solutions, calculation of the objective function and the 
formation of a new population. It is formed on the basis 
of all individuals existing on the current iteration: 
solutions concluded in the current population and a set of 
the new solutions obtained after operators of crossing and 
a mutation. Every individual can take its place in a new 
population with sufficiently high probability Psel. To 
ensure the impact of individuals, which are not included 
in the new population, replacement is made: n solutions 
with the smallest value of the objective function of the 
new population is replaced by n solutions with the 
smallest value of the objective function of the entire set 
of solutions to the current iteration (the most "bad" 
solutions). n is a small number equal to about 10% of the 
number of solutions in the population. 

At the end of the algorithm, the decoder restores the 
packaging by using a solution with the highest value of 
the objective function, and the algorithm terminates. 

4 Results 
In this paper, the dimension of the source data is a 
number of rectangular objects to be packed. This 
approach is most suitable for the tested algorithm, since 
just the number of rectangular objects has the value for it, 
not the sizes of objects. To assess the effectiveness of the 
genetic algorithm, experiments were performed on a 
special sets of input data. Their peculiarity lies in the fact 
that for each of them there is at least one solution with 
objective function value of 100%.  

Based on recommendations from a variety of sources 
[12–14] and on the results of our experiments the “default 
values” for genetic algorithm parameters were set: 
- the population size – 20 
- number of iterations - 1000 
- probability of the crossing operator performing - 30% 
- probability of performing of the swap operation- 10% 
- probability of performing of the turn operation - 50%. 

For the given parameters values the algorithm showed 
the better results in most cases. To see this, here are some 
graphs (Figs. 3.1-3.4), which show different 
dependencies obtained in experiments. 

 
Figure. 3.1. The average value of the objective function on the 
iterations number 
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Figure. 3.2. The average value of the objective function on the 
size of the population 
 

 
Figure.3.3. The average value of the objective function on swap 
probability 
 

 
Figure.3.4. The average value of the objective function on 
crossing probability 
 

Assessments of the solution’s quality and searching 
time were carried out for two classes of containers: wide 
and long. Wide container is container with ratio of length 
to width is less than three, in other case container is long. 
Such division of containers into categories was required 
to test flexibility of algorithm. Figures 4.1–4.2 show 
results of experiments.  

The average value of the objective function falls 
under the law of the natural logarithm with increasing of 
dimension of the problem, which corresponds to the 
theory. Also the results demonstrate the difference in the 

quality of the solutions obtained for the two categories of 
containers. The algorithm provides a slightly better 
solution for long containers than for the wide. Most 
likely, the reason of this result is decoder. Average search 
time of solution increases according to the law of n2 with 
increasing of problem’s dimension. This result is also 
close to theory, which states that genetic algorithms using 
the block decoder with FF strategies have a time 
complexity O(m2 log m) ~ O(m2,5 log m). As expected, 
the category of the container does not have a significant 
effect on the solution search time. 

 

 
Figure. 4.1. Dependency of average value of the objective 
function on task dimension 
 

 
Figure. 4.2. Dependency of average value of searching time on 
task dimension 
 

The developed algorithm uses multi-point crossover 
and mutation operators, as well as several other 
heuristics, the purpose of which is to increase a variety of 
solutions in the population. It would be interesting to 
determine their impact on the results. To do this, every 
used heuristic has been turned off, and the number of 
points of crossover and mutation set to 1. To compare the 
performance of these two configurations of genetic 
algorithms: modified (multipoint and with heuristics) and 
simple (single-point), we construct the following 
dependencies: 
- a graph of the difference between the average values 

of the objective functions, that we obtained by the 
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first and second algorithms on the task dimension 
(figure 5,1). The graph shows that the average value 
of the objective function increase will be 2,5%, if we 
use the modified algorithm.  

- a graph of the difference between the average of 
searching time values on the task dimension (figure 
5,2). The graph shows that the searching time is 
greatly higher in the case of modified algorithm. 

 
The performance improvement, obtained by using 
modified genetic algorithm, may seem too insignificant in 
comparison with the increased time cost, and, as a result, 
the use of this algorithm may seem unjustified. But do 
not forget that graphs show the average value of the 
objective function. When using the modified algorithm 
globally-optimal solution were obtained in 91% of 
experiments, but in case of simple algorithm only in 56%. 

 
Figure. 5.1. Dependency of difference of average values of the 
objective function on task dimension 
 

 
Figure. 5.2. Dependency of difference of average value of 
searching time on task dimension 

5 Conclusion 
Genetic algorithms show good results in solving 
problems of optimal cutting. With their help it is possible 

to obtain effective solutions in a short time, looking less 
than 1% of the total possible combinations of solutions. 

The tests have confirmed that the use of multi-point 
crossover and mutation operators in the modified 
algorithm allows us to find the solution with the better 
objective function value and find globally-optimal 
solution in many cases. However, when choosing an 
algorithm for solving a specific problem, it also important 
take into account the available time resources. 
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