
a Corresponding author: sermax@yandex.ru

Use of genetic algorithms for solving problems of optimal cutting

Maxim Sergievskiy1, 2, a and Sergey Syroezhkin1

1National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409, Moscow, Russia
2Moscow Technological Institute, 119334 Moscow, Russia

Abstract. Cutting and packing problem is one of the most common optimization problem. Even a small space or
material savings allow obtaining substantial advantages on an industrial scale. This paper proposes the genetic
algorithm to solve this problem. It includes multipoint operators of crossing, mutation and selection. To use these
operators, the special encoding of cutting card is applied, that can be transformed to the real coordinates by using
decoder. This is a block typed decoder, which substitution strategy is “first-fit”. Efficiency of the solutions, obtained
by the algorithm, depends on its parameters and on dimension of a task, but on average it decreases under the
logarithmic law from dimension of a task. Temporary complexity of algorithm shows square dependence on the task
dimension.

1 Introduction
Obtaining the effective solution of the packing
rectangular objects problem in a two-dimensional
container is one of the most important task of discrete
optimization [1]. The necessity of finding efficient
algorithms for this task is caused by its broad practical
application in various branches of production. Even a
small saving of resources while filling container and
cutting material results in very tangible saving.

Complexity of this packing problem is caused by its
belonging to a class of NP difficult problems of
combinatory optimization, i.e. there are no methods and
algorithms that can find the exact solution for polynomial
time. The studied task is NP difficult in strong sense,
because it contains NP difficult task as its subtask [2, 3].

There are many different methods for solving
orthogonal packing problems: methods of mathematical
programming, branch and bound methods, asymptotically
exact methods, single-pass and multi-pass heuristics,
metaheuristic, etc [1, 4]. Most of the methods are
developed in two directions. Methods of the first
direction searches for locally optimal solutions in some
neighborhood of the initial acceptable solutions. They use
decoders, which restore the packing map and calculate
objective function value.

Another direction is development of the constructive
methods. They deal with component-wise construction of
the packaging, where method adds new components to
the partially constructed pack while packing is not full.
Offered in this paper method is the typical representative
of the first class.

2 Problem statement
In this paper we consider the problem of packing
rectangular objects in rectangular container
(2 Dimensional Bin Packing Problem, 2DBP). Both
value, the length (L) and the width (W) of the container
are known. It is required to find the packing, which
allows to pack the greatest number of items into one
container.

Thus, the input data for the selected task is a set of
values: <W, L, m, w, l, e>, where W, L – the length and
width of the rectangular container; m – number of
rectangular elements for packing; w = (w1, w2, …, wi, …,
wm) – the vector of widths of elements; l = (l1, l2, ..., li, ...,
lm) – the vector of lengths of elements; � - the sign of
possibility of changing elements orientation. Let's
introduce a rectangular coordinate system, where OX axis
matches to horizontal edge of the object and the axis OY -
to vertical. Then task’s solutions can be represented as
follows: <W, L, m, w, l, X, Y, E>, where �=(�1, �2, …,
�i, …, �m), Y=(�1, �2,….�i, …, �m) – vectors of the
minimum coordinates of elements; �=(�1, �2,….�i,…, �m),
ei=1, if the element i is rotated on 90 degrees, else ei=0.

The acceptability of rectangular packing (RP) means
the fulfillment of the following conditions:
- orthogonal arrangement of rectangles in the packing:

for (xi , yi), i=1..m and any other vertex (xi
k
 , yi

k) of
rectangle i:

[(xi
k = xi) � (xi

k = xi + li)] � [(yi
k = yi) � (yi

k = yi + wi)]

- not overlapping of rectangles:
for i � j; i,j=1,..,m:

[(xi � xj+lj) � (xj � xi+li)] � [(yi � yj+wj) � (yj � yi+wi)]

 DOI: 10.1051/
C© Owned by the authors, published by EDP Sciences,

/

0 0
201conf

Web of ConferencesITM
itm

0,
0 0 00

6 2
266

(201)6

2016

8
8

This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits
distribution, and reproduction in any medium, provided the original work is properly cited.

��������	��
����

http://dx.doi.org/10.1051/itmconf/20160602008
http://www.itm-conferences.org
http://www.edpsciences.org
http://creativecommons.org/licenses/by/4.0

ITM Web of Conferences

�
- not overlapping rectangles edges by elements:

for every i=1..m:

(xi � 0)�(yi � 0)�(yi+wi � W)�(yi+wi � L)

An objective function can be represented as the ratio
of the area occupied by the packaged objects to the area
of the container:

Q = (� Si)/(W�L) � 1, for i=1..m.

3 Methods and algorithms
Due to the task complexity, there are no methods to check
every possible solution. Therefore, all existing
approaches to this problem are to limit the set of checked
solutions. Genetic algorithm, which applied in this paper,
also uses this approach.

Genetic algorithm is an evolutionary algorithm that
includes a group of metaheuristics for finding and
selecting the best solutions [5, 6]. Its core contains basic
concepts of the evolution theory: inheritance, mutation,
selection. The main idea is to construct some set of
optimization problem’s solutions (population) and by
getting through some transformations obtain new
solutions instead of bad fit old ones. Storing information
for multiple valid solutions at each iteration creates the
effect of parallel computing, and increases the chances of
finding the optimum.

To evaluate the effectiveness of the obtained
solutions, we should convert it to a form that would allow
us to calculate the objective function value. For this
purpose, a special decoder is used. There are different
approaches for individual decoding, but decoders of
block type are the most widespread. They use simple
strategies: ”the next fit” (NF), “the first fit” (FF) and
“best fit” (BF) [1–3, 7–14]. Based on the complexity of
the strategies, in this work we apply the FF decoder. The
decoder with the strategy “Substitution of first fit”
(SubFF) at each step places the first matching object (its
width does not exceed the width of the residual width of
the block) in a partially filled block. If a suitable object is
not found, it generates a free position of the next block
and places there the first suitable object. Such algorithm
(Sub(FF)) requires O(m2 log m) of time.

Figure 1. Example of SubFF executing for the sequence:
{1,2,3,4,5,6,7,8}.

Decoder gets the priority list (replacement) of
elements through input parameters and returns the
packing - list of element’s minimum coordinates. Unlike

most of the existing block decoders, which use packing
block structure for encoding rectangular, and based on
already compiled pair of block structures (one packing)
calculate the coordinates of the packing elements, our
decoder operates differently. It fills a container in
accordance with the priority sequence of rectangular
objects, thus it operates like tiered decoders, however in
the search for solutions it uses the classic division into
blocks. This decoder was developed to combine the
advantages of the both decoder types: blocked and tiered.
Generally, the block type decoder uses spatial resources
more effectively, while a decoder of tiered type has less
temporal complexity because it uses just the
identifications sequence for filling container instead of
block structures.

In operation, the decoder stores information about
free sections of the container, and when the element is
installed in such section (it is installed to the lower left
corner of the section), the decoder stores the coordinates
of the lower left point of the element, and "forget" about
the portion of the container, which was occupied. This is
implemented through the list of block-levels. Block-level
is a structure consisting of three coordinates: XLeft, YBegin,
YEnd. XLeft – the coordinate of the left edge of the block
level (the same as the coordinate of the left edge of the
block); YBegin – coordinate of the lower edge of the block-
level (the same as the y-coordinate of the lower boundary
of the free area in the block); YEnd – coordinate of the top
edge of the block-level (the same as the y-coordinate of
the upper boundary of the free area in the block). Figure 2
shows decoder’s algorithm in more detail.

Begin

Create the initial block-
level

Is block-level
exist?

Container is full
Find unpacked item,

 st1which matches to the
block-level

Is item found? Pack the item

Create new block-level
to the right of the itemNo

Yes

 st1Is there free space in
block-level?

Expand block-levels
that next to 1st

No

Yes

Find adjacent block-levels
in one block

Is adjacent block-
levels found?

Merge adjacent
block-levelsYes

No

level-block st1Delete the

No

Yes

No

End

Yes

st1level becomes the -block nd2The

Figure.2. Block diagram of decoder

The solution in the population is a numerical

sequence of object identifier for the package. The
negative value of the element’s identifier in the solution

02008-p.2

�

means the element’s rotation. Solution may contain
several identical identifiers; it means that the packaging
contains several identical elements. The number of
repetitions of the elements is specified in the input
parameters of the algorithm.

In the beginning, the algorithm randomly generates
the initial population, that is, each solution in the
population is created as a sequence of random numbers.
Further, operators of crossing, mutation and selection
change solutions at each iteration.

Crossover operator crosses pairs of solutions with a
given probability. If task’s dimension is large, solutions
may contain long sequences of numbers. Single-point
crossover operator is not effective in this case. For these
circumstances, n-point crossover operator was developed.

By default, the crossing points are selected uniformly:
the solution breaks into n length-equal ranges (where n –
number of crossing points), and each crossing point gets
out of the range corresponding to it. If crossing operator
forms solution, in which the number of an element
occurrences exceeds the maximum permissible value,
operator will replace redundant elements with any other
remained ones.

The developed crossing operator has several operating
modes:
1) classic n-point. The number of crossing points n is
specified by the user. In this mode, each solution in the
list of new solutions formed by the crossing of two old
solutions at n points.
2) gradually increasing number of crossing points. In this
mode, after each crossing of two solutions, obtained
solutions are stored in the list of new solutions. Thus, if
the number of crossing point is n, the list of new solutions
will contain new solutions formed by crossing of two old
solutions in 1,2,3, ..., and n points. This mode allows you
to get more different solutions, and it should increase the
probability of finding more effective packing, however,
this mode has a higher time complexity.
3) mixed mode with the specified ratio (default is 30%).
This mode combines the first two modes, so you can get
an expanded set of solutions by using the second mode,
but only with a given probability, to reduce the
computation time.

Obviously, to get a better solution, you need to check
more different solutions. Therefore, the crossover
operator has a special mode in which the count of
crossing points is selected randomly and closer to the top
of the solutions. Experimentally it was found that the
crossing points located at the beginning of the solution,
allow to obtain the better solutions. Probably, the reason
is that the first packaged elements mainly define the
configuration of the entire package.

Mutation operator makes random changes in
solution, allowing you to avoid "getting stuck" in a local
extremum. Implemented operator consists of two parts.
The first part carries out a swap of the elements within
solution, the second part performs rotation of elements by
90 degrees about its center in the plane of the container.
For the same reasons as in the crossing operator, here we
use multi-points mutation.

Selection operator is probably the most important
part of genetic algorithm. It performs analysis of

solutions, calculation of the objective function and the
formation of a new population. It is formed on the basis
of all individuals existing on the current iteration:
solutions concluded in the current population and a set of
the new solutions obtained after operators of crossing and
a mutation. Every individual can take its place in a new
population with sufficiently high probability Psel. To
ensure the impact of individuals, which are not included
in the new population, replacement is made: n solutions
with the smallest value of the objective function of the
new population is replaced by n solutions with the
smallest value of the objective function of the entire set
of solutions to the current iteration (the most "bad"
solutions). n is a small number equal to about 10% of the
number of solutions in the population.

At the end of the algorithm, the decoder restores the
packaging by using a solution with the highest value of
the objective function, and the algorithm terminates.

4 Results
In this paper, the dimension of the source data is a
number of rectangular objects to be packed. This
approach is most suitable for the tested algorithm, since
just the number of rectangular objects has the value for it,
not the sizes of objects. To assess the effectiveness of the
genetic algorithm, experiments were performed on a
special sets of input data. Their peculiarity lies in the fact
that for each of them there is at least one solution with
objective function value of 100%.

Based on recommendations from a variety of sources
[12–14] and on the results of our experiments the “default
values” for genetic algorithm parameters were set:
- the population size – 20
- number of iterations - 1000
- probability of the crossing operator performing - 30%
- probability of performing of the swap operation- 10%
- probability of performing of the turn operation - 50%.

For the given parameters values the algorithm showed
the better results in most cases. To see this, here are some
graphs (Figs. 3.1-3.4), which show different
dependencies obtained in experiments.

Figure. 3.1. The average value of the objective function on the
iterations number

0 500 1000 1500 2000 2500 3000
94,5

95,0

95,5

96,0

96,5

97,0

97,5

98,0

98,5

ÿ
(

)

Industrial Control Systems: Analysis, Modeling and Computation

02008-p.3

ITM Web of Conferences

�

Figure. 3.2. The average value of the objective function on the
size of the population

Figure.3.3. The average value of the objective function on swap
probability

Figure.3.4. The average value of the objective function on
crossing probability

Assessments of the solution’s quality and searching
time were carried out for two classes of containers: wide
and long. Wide container is container with ratio of length
to width is less than three, in other case container is long.
Such division of containers into categories was required
to test flexibility of algorithm. Figures 4.1–4.2 show
results of experiments.

The average value of the objective function falls
under the law of the natural logarithm with increasing of
dimension of the problem, which corresponds to the
theory. Also the results demonstrate the difference in the

quality of the solutions obtained for the two categories of
containers. The algorithm provides a slightly better
solution for long containers than for the wide. Most
likely, the reason of this result is decoder. Average search
time of solution increases according to the law of n2 with
increasing of problem’s dimension. This result is also
close to theory, which states that genetic algorithms using
the block decoder with FF strategies have a time
complexity O(m2 log m) ~ O(m2,5 log m). As expected,
the category of the container does not have a significant
effect on the solution search time.

Figure. 4.1. Dependency of average value of the objective
function on task dimension

Figure. 4.2. Dependency of average value of searching time on
task dimension

The developed algorithm uses multi-point crossover
and mutation operators, as well as several other
heuristics, the purpose of which is to increase a variety of
solutions in the population. It would be interesting to
determine their impact on the results. To do this, every
used heuristic has been turned off, and the number of
points of crossover and mutation set to 1. To compare the
performance of these two configurations of genetic
algorithms: modified (multipoint and with heuristics) and
simple (single-point), we construct the following
dependencies:
- a graph of the difference between the average values

of the objective functions, that we obtained by the

0 20 40 60 80 100
96,0

96,5

97,0

97,5

98,0

0 20 40 60 80 100

97,0

97,2

97,4

97,6

97,8

98,0

98,2

0 20 40 60 80 100
97,6

97,7

97,8

97,9

98,0

98,1

F = -1,92ln(n) + 105,2
R² = 0,570

F = -0,94ln(n) + 102,1
R² = 0,330

95,5
96

96,5
97

97,5
98

98,5
99

99,5
100

0 20 40 60 80

F(n)

������� �	�

��wide� long�

T = 4E-07n2 - 6E-06n + 7E-05
R² = 0,992

T = 3E-07n2 - 2E-06n + 3E-05
R² = 0,992

0:00:00

0:00:17

0:00:35

0:00:52

0:01:09

0:01:26

0:01:44

0 20 40 60 80

T(n)

������� �	�

��long wide

02008-p.4

�

first and second algorithms on the task dimension
(figure 5,1). The graph shows that the average value
of the objective function increase will be 2,5%, if we
use the modified algorithm.

- a graph of the difference between the average of
searching time values on the task dimension (figure
5,2). The graph shows that the searching time is
greatly higher in the case of modified algorithm.

The performance improvement, obtained by using
modified genetic algorithm, may seem too insignificant in
comparison with the increased time cost, and, as a result,
the use of this algorithm may seem unjustified. But do
not forget that graphs show the average value of the
objective function. When using the modified algorithm
globally-optimal solution were obtained in 91% of
experiments, but in case of simple algorithm only in 56%.

Figure. 5.1. Dependency of difference of average values of the
objective function on task dimension

Figure. 5.2. Dependency of difference of average value of
searching time on task dimension

5 Conclusion
Genetic algorithms show good results in solving
problems of optimal cutting. With their help it is possible

to obtain effective solutions in a short time, looking less
than 1% of the total possible combinations of solutions.

The tests have confirmed that the use of multi-point
crossover and mutation operators in the modified
algorithm allows us to find the solution with the better
objective function value and find globally-optimal
solution in many cases. However, when choosing an
algorithm for solving a specific problem, it also important
take into account the available time resources.

References
1. A.S. Philippova, Methods of the solution of

orthogonal packing problems on the basis of block
structures technology (Ufa, 2007) [In Rus]

2. R.I. Phayzrahmanov Optimization of process of
cutting of industrial materials by criterion of a
minimum of material losses in the presence of
technological restrictions (Ufa, 2011) [In Rus]

3. A.I. Lipovetskiy, Automatic design in mechanical
engineering BSSR AN ITK, 80 (1985) [In Rus]

4. A.Ph. Valeeva, Constructive methods for solving
orthogonal packing and cutting task (Ufa, 2006) [In
Rus]

5. L.A. Gladkov, V.V. Kureychik and V.M. Kureychik
Genetic algorithms (Moscow, 2006) [In Rus]

6. V.V. Emelyianov, V.V. Kureychik and V. M.
Kureychik, Theory and practice of evolutionary
modeling (Moscow, 2003) [In Rus]

7. E. Hopper and B. Turton, European Journal of
Operational Research, 128, 34 (2001)

8. A.A. Petunin, E.A. Muhacheva and A.S. Philipova,
Information technology, 1, 28 (2008) [In Rus]

9. V.D. Avakumov. Information technology, 5, 31
(2009) [In Rus]

10. E.A. Muhacheva, A.S. Muhacheva and
A.V. Chiglincev, Information technology, 11, 13
(1999) [In Rus]

11. N.N. Kuzyurin and A.I. Pospelov Diskr. Mat., 18, 76
(2006)

12. A.A. Petunin, E.A. Muhacheva and A.S. Philippova,
Information technology, 1, 28 (2008) [In Rus]

13. D. Rutkovskaya, M. Pilinskiy and L. Rutkovskiy,
Neural networks, genetic algorithms and fuzzy
systems (Moscow, 2006)

14. A.S. Muhacheva, S.H. Kurelenkov, M.A. Smagin,
R.R. Shirgazin, Information technology, 10, 26 (2002)
[In Rus]

f = -1,36ln(n) + 6,477
R² = 0,522

0

0,5

1

1,5

2

2,5

3

0 20 40 60 80

f(n)

������� �	�

��wide� long�

t = 3E-07n2 - 6E-06n + 3E-05
R² = 0,986

0:00:00

0:00:09

0:00:17

0:00:26

0:00:35

0:00:43

0:00:52

0:01:00

0:01:09

0 20 40 60 80

t(n)

������� �	�

��wide� long�

Industrial Control Systems: Analysis, Modeling and Computation

02008-p.5

