Assessment of Ecosystem Water Conservation Value In The Beijing Four Seasons Flower Valley

Xiao-Na LIU and Hong Li

Beijing Research & Development Center for Grass and Environment, Beijing 100097, China

Abstract. Based on the data of field investigation and multi-source data analysis, Beijing Four Seasons Flower Valley declared in 2008 towards valley economy water conservation function and value was estimated by means of rainfall storage capacity as well as ecological economy. The results showed that: Landscape structure of FSFV was forest land-cultivated land-grassland. FSFV had the highest water conservation function in Beijing valleys, with the capacity of 1101.13 m3/hm2. Annual total amount of water conservation was 31.20×106 m3, accounting for 10.07% of Beijing valleys, and the total value of water conservation was 3.61×108 Yuan. High water conservation capacity areas were mainly located in the eastern mountainous region with broadleaf forest centralized distribution. Low water conservation function areas were mainly occurred in the regions effected by human activities. Forest ecosystem had the highest capacity of water conservation of 1116 m3/hm2, while construction ecosystem had the lowest. Higher degree of human activities, lower capacity of water conservation. Shrub forest and broadleaf forest had the largest contribution on valley water conservation, with contribution rate of 36.35% and 35.62%. Ranking of water conservation capacity, broadleaf forest had the highest value of 1135 m3/hm2, followed by coniferous forest, shrub forest and mixed forest.

1 Introduction

With climate change and rapid socio-economic development, water demand is raising gradually and water environment is deteriorating sharply. Water shortage has become the focus of common concern, presented increasingly serious trend, especially in northern China. Beijing, as the national capital, has become one of metropolises facing the worst water scarcity in the world, with water resources less than 200 m3 per capita, approximately 1/10 and 1/38 of the national and world per capita level according to the newest Beijing water resources bulletin published in 2014. As ecological conservation area of the national capital, Beijing’s mountainous area is the natural ecological barrier, water conservation region and bearing capacity of biodiversity. Restricted by tough geographical and natural conditions, it is also the region with economic underdevelopment. With the strength of human activities increasing, such as urbanization, industrialization and agricultural intensification, ecological environment and natural resources are faced with tremendous development pressure in those mountainous areas, such as mining, soil erosion, and destruction of vegetation. The contradiction between socio-economic development and ecological environment protection becomes relative prominent and acute, which prompting the gap between urban and rural significantly [1-2].

How to achieve supply equalization and benifits maximum of ecosystem services by means of combination of ecological protection and poverty alleviation on the basis of ecological construction and environmental protection? Ecological economization and economic ecologization is the hot issue currently [3]. With ecological protection as premise, aiming to drive local development, valley economy which was proposed officially in 2008 is industrial economic belt by unified development which takes natural valley of mountain as unit, and an important and effective way to break the bottleneck of the comprehensive arrangement and improvement rural and urban development in Beijing’s mountainous areas [4-5]. Beijing has 179 valleys along with area more than 5 km2 covering total area of 10418 km2 with the percentage of 62% of total capital area. Beijing mountainous valley has a pivotal role in the capital water conservation, water environment security and socio-economic sustainable development. Ecosystem function in this region showed a decline trend for superimposed effects of human activities and its fragile ecological environment since implementation of valley economy in 2008, especially the function of water conservation in moutainous area. Water conservation function was influenced by many factors such as climate change, physical and chemical properties of soil, and topography [6]. Currently, the research of water conservation function was mainly focused on watershed.
and the large scale context, rarely on small-scale territorial unit like valley. Meanwhile, the relevant research was mainly for forest ecosystem, weakly for grass, shrub, and other ecosystems. Differences of water conservation function among varied ecosystems were rarely mentioned, especially in small scale [7].

According to the investigation of Beijing Municipal Commission of Rural Affairs, Yanqing District as the host site of 2022 the winter Olympics has 17 valleys with development potential [5]. Ecological environment protection and ecological civilization construction becomes urgent and irreplaceable for regional sustainable development [8]. Four Seasons Flower Valley (FSFV), which is located in eastern mountainous region of Yanqing District, was listed as one of ten strategic growth pole construction of ‘Demonstration Area of Green Beijing’ in the 12th Five-Year Plan of Yanqing County. Meanwhile, it has also been listed as of seven key valleys in Beijing mountainous area in 2011. Based on the land use and land cover classification maps in 2013 extracted by SPOT5 images, forest ecosystem was major natural type with proportion of 81.27% in FSFV, followed by farmland and grassland ecosystem. Therefore, water conservation function of ecosystem in FSFV is the significant role. Effective assessment of water conservation function and its value is the basis for the establishment of long-term ecological compensation mechanism, for providing further natural vegetation protection and ecological construction, which meeting the construction of ecological civilization and ecological economy development in Beijing mountainous areas [9].

The value of water conservation function was assessed using method of ecological economics in FSFV in 2013, for the purpose of providing basic data for reasonable protection and exploration local natural resources, and serving in the ecological, economic and social sustainable development in Beijing mountainous areas.

2 Materials and methods

2.1 Study area

Four Seasons Flower Valley (FSFV) is located in the eastern part of Yanqing District in Beijing mountainous areas, including Liubinpu Town, Sihai Town and Zhenzhuquan Town (Figure 1).
2.2 Methodology

Ecosystem water conservation function is consisted of water regulation and water purification. According to the similar essence between water regulation and reservoir storage, this study adopted the method of alternative cost of reservoir storage project to calculate the water regulation value. Meanwhile, the value of water purification was evaluated through shadow project method with reference to the average price of residential water for the same principle of water purification. Currently, methods of regional water balance and rainfall storage are the common methods to evaluate water conservation function at home and abroad [10]. This study considered the water conservation as the increment of forest, grassland, waterbody, farmland, and desert ecosystem compared with bare land, that is the reduction of surface runoff. Quantization of water conservation function was used the method of rainfall storage. Formula is as follows:

\[Q_c = J \times R \times A \times 0.55 \times J \times A \times VC \]

(1)

\[J = J_0 \times K \]

(2)

\[R = R_0 - R_e \]

(3)

\[VC = (NDVI - NDVI_s) / (NDVI_v - NDVI_s) \]

(4)

\[NDVI = \frac{R_{red} - R_{nir}}{R_{red} + R_{nir}} \]

(5)

where \(Q_c \) is the annual rainfall storage of ecosystem, \(m^3/\alpha \); \(J \) is runoff from rainfall, \(mm \); \(J_0 \) is the total rainfall, \(mm \); \(K \) is the proportion rainfall runoff accounted for the total rainfall; \(R \) is efficiency coefficient of ecosystem runoff reduction, as compared with bare land; \(R_0 \) is the rainfall runoff rate of bare land; \(R_e \) is the rainfall runoff rate of ecosystem; \(VC \) is the vegetation coverage, \(\% \); \(A \) is the acreage of region, \(m^2 \); \(NDVI \) is normalized difference vegetation index; \(NDVI_v \) is the maximum of \(NDVI \); \(NDVI_s \) is the minimum of \(NDVI \); \(R_{nir} \) is the infrared spectral reflectance; \(R_{red} \) is the red spectral reflectance. \(K \) value is calculated based on daily rainfall data, this study used 0.4 based on the existing research results [11].

\[V_{cw} = Q_c \times c_c \]

(6)

where \(V_{cw} \) is the annual water regulation value, \(Yuan/\alpha \); \(Q_c \) is the annual rainfall storage of ecosystem, \(m^3/\alpha \); \(c_c \) is the unit capacity cost of reservoir construction, \(Yuan/m^3 \). According to China Water Conservation Yearbook from 1993 to 1999, the unit capacity cost of reservoir construction is 2.17 Yuan/t. In the light of Beijing’s consumer fixed base Fixed price index, the \(c_c \) is 7.54 Yuan/t in 2013.

\[V_{cw} = Q_c \times c_c \]

(7)

where \(V_{cw} \) is the annual water purification value, \(Yuan/\alpha \); \(Q_c \) is the annual rainfall storage of ecosystem, \(m^3/\alpha \); \(p_w \) is the water purification cost, replaced with the average price of residential water in Beijing, that is 4 Yuan/m³ in 2013.

\[V_w = V_{cw} + V_{pw} \]

(8)

where \(V_w \) is the annual water conservation value, \(Yuan/\alpha \); \(V_{cw} \) is the annual water regulation value, \(Yuan/\alpha \); \(V_{pw} \) is the annual water purification value, \(Yuan/\alpha \).

3 Results and analyses

FSFV has high vegetation coverage over 80%, which means that water conservation function is the vital ecosystem service in this valley. The average annual rainfall in this valley was 518.18 mm, close to the average of overall Beijing mountainous valleys. The water conservation capacity of FSFV in 2013 was 1101.13 m³/m², amount to 21.25% of annual average rainfall, higher than the capacity of overall mountainous valleys (1016.66 m³/m²), which pointed that FSFV had the highest water conservation function in Beijing valleys. Annual total amount of water conservation was 31.20×10³ m³, accounting for 10.07% of Beijing mountainous valleys.

Water conservation function within the ditch showed significant spatial differences (Figure 3). High water conservation capacity areas were mainly located in the eastern mountainous region which was centralized distribution of broadleaf forest, followed by the northern and southern regions which mainly had shrub forest distribution. Low water conservation function areas were mainly in the western gently topography parts, regions along the road and the population concentrated areas. Those places was effected by human activities obviously, resulted in severely damaged vegetation and large intensity of land use which the land use types were farmland, orchard land and construction land with poor water conservation capacity. Other water conservation capacity areas had sparse vegetation coverage, low rainfall, with dominant land cover types of shrub forest and grassland.

Figure 3. Spatial Distribution of Water Conservation Function Of FSFV In 2013
Different ecosystem types had different water conservation capacity. Forest ecosystem had the highest capacity of water conservation, with the index value of 1116 m3/hm2, while construction ecosystem had the lowest capacity of 955 m3/hm2. The water conservation capacity showed apparent characteristics, that was natural ecosystem types were higher than artificial ecosystem types. Higher degree of human activities, lower capacity of water conservation. Although farmland ecosystem was dominant in FSFV for valley economy, but the capacity of artificial ecosystem types was farmland > orchard > construction.

Toward to the forest ecosystem with highest water conservation capacity, different forest types varied obviously in water conservation function. Shrub forest and broadleaf forest had the largest contribution on valley water conservation, with contribution rate of 36.35% and 35.62% (cumulative contribution rate of 71.97%), while the contribution rate of coniferous forest and mixed forest was 6.33% and 4.04%. In light of water conservation capacity, broadleaf forest had the highest value of 1135 m3/hm2, followed by coniferous forest of 1125 m3/hm2. Shrub forest had the lowest capacity with value of 1098 m3/hm2, but had the largest quantity of water conservation for the largest acreage.

The value of water conservation in FSFV was 3.61×108 Yuan in 2013, with 2.36×108 Yuan of water regulation value and 1.25×108 Yuan of water purification value accounting for 62.34% and 34.66% of the total water conservation value respectively. To the unit area value, the FSFV was 11991 Yuan/hm2 of water conservation, 8303 Yuan/hm2 of water regulation, and 4405 Yuan/hm2 of water purification.

4 Conclusions

Water conservation function and value of Four Seasons Flower Valley (FSFV) was investigated and assessed by method of remote sensing, GIS integrated technology and ecological economy in 2013 after being listed as of seven key valleys in Beijing mountainous area in 2011 by Beijing Municipal Commission of Rural Affairs. The results showed that:

(1) Regional structure of land use and land cover in FSFV was forest land-cultivated land-grassland based on SPOT5 images in 2013. Farmland ecosystem was the dominant artificial type with proportion more 12%, while forest ecosystem was major natural type with proportion over 80%. The primary forest types in FSFV are broadleaf forest, coniferous forest, mixed forest and shrub forest, the proportion respectively was 34.58%, 6.20%, 4.02% and 36.47%.

(2) FSFV had the highest water conservation function in Beijing valleys, with the water conservation capacity of 1101.13 m3/hm2, higher than the overall valleys (1016.66 m3/hm2). Annual total amount of water conservation was 3.20×108 m3, accounting for 10.07% of Beijing mountainous valleys. The value of water conservation in FSFV was 3.61×108 Yuan, with 2.36×108 Yuan of water regulation value and 1.25×108 Yuan of water purification value. Water conservation function showed significant spatial differences. High water conservation capacity areas were mainly located in the eastern mountainous region which was centralized distribution of broadleaf forest. Low water conservation function areas were mainly in the regions effected by human activities obviously, the land use types were farmland, orchard land and construction land.

(3) Different ecosystem types had different water conservation capacity. Forest ecosystem had the highest capacity of water conservation, with the index value of 1116 m3/hm2, while construction ecosystem had the lowest capacity of 955 m3/hm2. Natural ecosystem types were higher than artificial ecosystem types. Higher degree of human activities, lower capacity of water conservation. Different forest types varied obviously in water conservation function. Shrub forest and broadleaf forest had the largest contribution on valley water conservation, with contribution rate of 36.35% and 35.62%. Ranking of water conservation capacity, broadleaf forest had the highest value of 1135 m3/hm2, followed by coniferous forest, shrub forest and mixed forest.

Acknowledgements

This work was financially supported by the Project funded by China Postdoctoral Science Foundation (2016M591112), the Project funded by Beijing Postdoctoral Science Foundation, the Project funded by Beijing Academy of Agricultural and Forestry Sciences Postdoctoral Science Foundation, and Beijing Municipal Science & Technology Plan Project (D131100000613002).

References

