
* Corresponding author: popov1955@gmail.com 

Model of tunnelling through periodic array of quantum dots 

Dmitry Meynster
1

, Anton Popov
1

, Igor Popov
1,*  

1ITMO University, Department of Higher Mathematics, 197101, St. Petersburg, Russia 

Abstract. Several explicitly solvable models of electron tunnelling in a system of single and double two-
dimensional periodic arrays of quantum dots with two laterally coupled leads in a homogeneous magnetic 
field are constructed. First, a model of single layer formed by periodic array of zero-range potentials is 
described. The Landau operator (the Schrodinger operator with a magnetic field) with point-like interactions  
is the system Hamiltonian. We deal with two types of the layer lattices: square and honeycomb. The 
periodicity condition gives one an invariance property for the Hamiltonian in respect to magnetic 
translations group. The consideration of double quantum layer reduces to the replacement of the basic cell 
for the single layer by a cell including centers of different layers. Two variants of themodel for the double 
layer are suggested: with direct tunneling between the layers and with the connecting channels (segments in 
the model) between the layers. The theory of self-adjoint extensions of symmetric operators is a 
mathematical background of the model. The third stage of the construction is the description of leads 
connection. It is made by the operator extensions theory method too. Electron tunneling from input lead to 
the output lead through the double quantum layer is described. Energy ranges with extremely small 
(practically, zero) transmission were found. Dependencies of the transmission coefficient (particularly, 
“zero transmission bands” positions) on the magnetic field, the energy of electron and the distance between 
layers are investigated. The results are compared with the corresponding single-layer transmission.   

1 Introduction 

Electron tunnelling through periodic array of quantum 
dots in a homogeneous magnetic field has been 
intensively investigated over the last few years because it 
can be significant for nanotechnology applications [1-6]. 
Since the publication of famous Hofstadter paper [7] 
research interest in spectral properties of two-
dimensional periodic arrays in magnetic field has greatly 
increased. Fractal structure of the spectrum (and 
“Hofstadter butterfly” type energy-flux diagrams) has 
been a theoretical result for long time, but later got 
experimental confirmation.  

There are several different approaches to building 
models of quantum dot arrays. In this paper zero-range 
potential model [8-10] based on the theory of self-adjoint 
extensions of symmetric operators is used [11]. One of 
its benefits is that the model is explicitly solvable. 

Because of high quality of nanostructure devices, 
large Fermi wave length (i.e. the de Broglie wavelength 
of electrons with energy close to the Fermi energy) 
( 84 10��  m) and long mean free path of electron ( 510�  
m) can be observed [12]. Therefore, one deals with the 
ballistic regime of electron transport. In this case the 
Landauer-Buttiker formalism can be used to derive the 
conductivity �  for the nanostructure with several leads 
from the transmission coefficient =( ) |

E E
F

T E  (here 
F

E  

is the Fermi energy). 

In the simplest case (one incoming and one outgoing 
channel) the Landauer formula has the form 

2

=
(1 )
e T

T

�
��

 [13]. Here e  is the electron charge, �  

is the Plank's constant. The geometry of a nanostructure 
can influence transmission coefficient a lot. 

In this article we consider tunnelling in the system 
consisting of double two-dimensional periodic array 
(with square or hexagonal (honeycomb) lattices in each 
layer) of quantum dots with two connected semi-infinite 
leads orthogonal to the plane of the array. We study the 
influence of the magnetic field and tunnelling electron 
energy on the transmission coefficient and compare our 
results with the tunnelling through the corresponding 
single-layer periodic arrays researched earlier [14-15]. 

2 Model of single-layer array 

We start from the Hamiltonian of a single particle in 
constant homogeneous magnetic field B . Let us assume 
that particle has mass m  and electric charge e . Since 
the space is 3� , we choose a standard basis , ,i j k  such 
that B  is collinear to k : = , 0B B �B k . Then, the 
particle can move freely along z  axis, and the state 
space of the model is 2 2( )L � , where 2�  is the plane 
based on vectors ,i j . 
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The Hamiltonian 0H has the following form: 

                       0
1 ˆ= ( ( )),

2
e

H p

m c

� A r                     (1)

where c is the speed of light, ˆ =p i� �� is the two-
dimensional momentum operator, ( )A r is a vector 
potential of the field B  ( = rotB A ). Vector potential 
is not unique, we will use the symmetric gauge 

(
1( ) =
2

�A r B r ).

The following standard notations are used:
• =| | /eB cm� is the cyclotron frequency;

• 0 = 2 / | |c e�	 � is the quantum of the magnetic flux;

• 0= /B
 � 	 --- number of the flux quanta through 

the unit area in 2� . 
The sign of 
 is chosen in such a way that the 

condition > 0eB
 holds.
We will also use the system of units in which 

= = = = 1e m c� , to simplify the calculations. Then, 

0H can be rewritten in the following form:

2 2
0

1= ( ) ( ) .
2

H i y i x

x y

� 
 � 

� 
� �

� � � �� �� �� �
(2)

We will also need the Green function of 0H , which has 
the form ([11]):

0 ( , , )G E� �r r

21 1 1( )exp( )
2 2 2

E
i� �


� �
� �� � � � � �r r r r� � (3)

                   21( ,1, ).
2

E �

�

�	 � �r r� �

Here ( )x� is the Euler Gamma-function, 
( , , )a c x	 is the confluent hypergeometric function of 

the second kind [6]. 
To obtain a model for an array of quantum dots, we 

use the theory of self-adjoint extensions of symmetric 
operators. We assume that quantum dots are placed in 
the points of regular two-dimensional lattice � . Square 
and hexagonal lattices are considered in the next 
sections. We can fix two vectors ,1 2a a in such a way 

that any element l of � has unique representation 

1 2= � ��1 2l a a , where 1� and 2� are integers. For 

the square lattice 1 = (1,0)a and 2 = (0,1)a can be 
used. Note also that the hexagonal lattice can be obtained 
as a superposition of two offset square lattices:
                                  = ,K� � ��                             (4)

where �� is square lattice, = {0, }K b ,

2= ( )
3

�1 2b a a . 

Now consider the Hamiltonian of the array of 
quantum dots as a perturbation of operator 0H . Then, it 
can be expressed in the following form:
                      0= ( ).H H V� �

��
� i

g
i

r g                   (5)

Due to several physical and mathematical 
assumptions (namely, we consider separable potential 
for the lattice with short-range potentials for centers) 
[9,12], potentials V can be replaced by � -like one, 
hence, 0H coincides with H everywhere except points 

of the lattice � . To obtain H , we first restrict 0H

onto the set of smooth functions vanishing at the points 
of the lattice (let the restriction be 0S ), and then 

construct self-adjoint extension of 0S . The Krein's 
resolvent formula [8] for infinite deficiency indices 
describes the difference between the Green functions of 
H and 0H :

0
1
, 0 0

,

( , ; ) = ( , , )

[ ( ) ] ( , ; ) ( , ; ).

G G

Q A G G

� �

� � ��
�

���

� � �

� ��� g g

g g

r r r r

r g g r (6)

Here Q is the Krein Q-function and operator A
parameterizes the self-adjoint extension of the operator 

0H . 
Finally, we can assume that non-diagonal elements of 

( )Q � are negligible, hence, it takes the form:

                                ( ) = ( ) ,
ij ij

Q q� � �                      (7)
where q is:

          
1 1= ( ( ) log( ) 2 ).

2 2 E
q C

�� �

� �

� � � � (8)

Here � is digamma function and 
E

C is the Euler's 
constant.

3 Tunnelling through double layer

3.1 Model of tunnelling between layers

First, we build the model for the square lattice. We 
assume that the state space of the model is a direct sum 
of two identical state spaces, one for each layer:
                           2 2

2 2= ( ) ( ).L L�� ��                 (9)
Then, the unperturbed Hamiltonian has the following 
form:
                                  0 = ,

L L
H H H�                     (10)

where 
L

H is the Hamiltonian for the single layer.
To use the Krein's resolvent formula, we, first, 

restrict operator 
L

H onto the set of smooth functions 
vanishing at the points of the lattice, let the restricted 
operator be 

L
S . Then, the restriction of 0H has the 

form:

2
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                                   0 = .
L L

S S S�                        (11)

The deficiency space for 0S is the direct sum:

                                    = ,
L L
�� � �                       (12)

where 2= ( )
L

l �� is the deficiency space for operator 

L
S . 
In its turn, the Krein Q-function is the direct sum:
                                    = ,

L L
Q Q Q�                       (13)

where 
L

Q is defined as in (7), (8). 

Let f be a function from 2 ( )l � , then the Krein � -

function of pair ( , )
L L

H S for a single layer has the 
following form:
            0( ( ) )( ) = ( , ; ) ( ),

L
f G f� �

��

� �
g

r r g g (14)

and the Krein � -function for the whole system can be 
defined as the direct sum:
                                    = .

L L
� � ��                        (15)

Finally, using the Krein resolvent formula for infinite 
deficiency indices, we obtain an expression for the 
Green function of H : 

0
1
, 0 0

,

( , ; ) = ( , , )

[ ( ) ] ( , ; ) ( , ; )

G G

Q z A G G

� �

� ��
�

�����

� � �

� �� �� g g

g g

r r r r

r g g r (16)

Now, we need a self-adjoint operator. It is related 
with the properties of A . We assume that the 
probability of tunnelling between non-adjacent points of 
the lattice is negligible. Due to the periodicity of the 
system, the Hamiltonian of a single layer 

L
H should be 

invariant with respect to the magnetic translation group 
transformations (see, e.g., [6]), therefore, we have the 
following property for the terms of operator 

L
A of the 

single layer:

, ,
= exp( ( ( ))) .

L L
A i A�


� �
� �

l g m g l m
g l m (17)

As a consequence, it is sufficient to define elements 

,0L
A

�
(see [6] for more detailed explanation):

1 2 2,0

2 2 2

= ( ( ,0)( (1, ) ( 1, ))

(0, )( ( ,1) ( , 1))).
L

A  � � � � � �

� � � � � �

� � �

� � �
l (18)

Here  is some constant which characterizes the
intensity of the interaction.

Now, we need to take into account tunneling between 
layers, hence, operator A takes the following form:

                            = .L

L

A I

A

I A

 
 
� 

� �
� �

                         (19)

In the case of hexagonal lattice the main change is 
different magnetic translations group which lead to 
changes of the form of operator 

L
A [15]: 

            

= [ ( , )
,

( , )

( , )

2exp( ( ( , )
3

( , )))

( ( , ) ( , )

( , ))]

L
A

i

 �

�

�

�
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�
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�

� � �

� � �

� � �
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� � �
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i 1 j
l
i j

i 2 j

i 1 2 j

i 1 j

i 2 j

i 1 j i 2 j

i 1 2 j

l a l b
l

l a l b

l a a l b

l a b l

l a b l

l a b l l a b l

l a a b l

(20)

3.2 Model of tunnelling

Now, we would like to build the general model of 
tunnelling through the quantum layer (single or double, 
it doesn't matter). To do that, we use the idea from [17]:
let D be any device that is connected to a pair of semi-
infinite leads at points C�  and C� . We assume that the 

Green function 
D

G for D is already known. Let 
D
�

be the state space for the device, �� be the state spaces 
for leads, then, the state space for the whole system is 
given as follows:
                          0 = .

D� �� �� � � �                   (21) 
The Hamiltonian of the system without interaction 

between the device and the channels is just the 
orthogonal sum of the corresponding operators: 
                       0 = ,

D
H H H H� �� �                    (22) 

where 
D

H is the Hamiltonian of a charged particle in 

D , H� is the Hamiltonian of the charged particle in 

space 2 ( )L R� under the Neumann condition at the edge 

(it has the form 
2

2

d

dx

� ). It is easy to find the Green 

functions for H� : 

( , ; ) =

[exp( | |) exp( ( ))],
2

G x x

i
ik x x ik x x

k

�� �

� �� � � �
(23) 

where 2 =k � . 
Using the theory of self-adjoint extensions again, we 

can obtain the model Hamiltonian � . To do that, we, 
first, restrict 0H onto the set of smooth functions 

vanishing at the points C� , then, build its extension H . 

After solving the scattering problem for H , we 
obtain the following formula for the transmission 
coefficient ( )T E : 

              
2

21
2

| ( ) |( ) = .
| det[ ( ) ] |

D

Q
T E

E Q E A

  � �

�
              (24) 
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Here A is the matrix of the self-adjoint operator that 
characterizes the extension,

                  

0 0 0
0 0 0

= ,
0 0 0
0 0 0

A

 
 

 
 

�

�

�

�

� 

� �
� �
� �
� �
� �

                 (25) 

( )Q E is the Krein Q-function:

11 12

21 22

( ) =
( ) 0 0 0
0 ( ) ( ) 0

,
0 ( ) ( ) 0
0 0 0 ( )

D D

D D

Q E

Q E

Q E Q E

Q E Q E

Q E

�

�

� 

� �
� �
� �
� �
� �

(26) 

( ) = (0,0; )Q E G E� � and 
D

Q is 2 2� Krein Q-
function for the extension, where 

12 21( ) = ( ) = ( , ; )
D D D

Q E Q E G E1 2r r and
11 22( ), ( )
D D

Q E Q E are the regular parts of 

1 1 2 2( , ; ), ( , ; )
D D

G r r E G r r E , correspondingly. Values 

 � describe the quality of contacts C� . This technique 
was used in [14] to construct a model of tunneling 
through single quantum electron layer.

4. Results and discussion

For numerical experiments in this section constants 
, ,   � � were all selected equal to 1. Only a finite 

fragment of an infinite lattice is used for calculations 
since points which are far enough from contacts don't 
have much influence on transmission coefficient value. 
For the square lattice, the basic vectors 

1 2= (1,0), = (0,1)a a were used; the hexagonal 
(honeycomb) lattice is defined using (4). 

The transmission coefficient T is calculated as a 
function of electron energy E for different values of the 
magnetic field B . The resulting function of two values 
is represented as a contour plot. We assume that the both 
contacts are in the same lattice cell, calculations show 
that putting them in different cells of the lattice leads to 
decreasing of T but doesn't add or remove any other 
significant effects.

During the investigation of tunnelling through single-
layer lattices, wide zones in the resulting contour plot 
with very low value of T were discovered ([14], [15]). 
The widths of these zones are greater than the product of 
the Boltzmann constant and the temperature value and, 
thus, this phenomenon is physically measurable. Our 
calculations show that these zones are preserved both in 
the square and the hexagonal lattice cases (see Fig. (1-
4)). Plots were built for the model with direct tunnelling 
between the layers. The model with channels between 

the layers gives one qualitatively analogous result such 
zones exist too.

Fig.1. Dependence of transmission coefficient value T on 
electron energy E and magnetic field B : case of single-layer 
square lattice. B and E are in dimensionless units.

Fig. 2. Dependence of transmission coefficient value T on 
electron energy E and magnetic field B : case of double-
layer square lattice. B and E are in dimensionless units.

Fig. 3. Dependence of transmission coefficient value T on 
electron energy E and magnetic field B : case of single-layer 
hexagonal lattice. B and E are in dimensionless units.
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Fig. 4. Dependence of transmission coefficient value T on 
electron energy E and magnetic field B : case of double-
layer hexagonal lattice. B and E are in dimensionless units.

It can be observed that the middle of each dark strip 
in Fig. (3) and Fig. (4) coincides with some singularity 

of 
1( )
2

E

�
� � (which is one of multipliers in (3)).

The dependence of T on B and E shown in the 
figures is very complicated. For the hexagonal 
(honeycomb) lattice, it is also complicated but local 
oscillations of T have less amplitude, that is why in the 
Fig. (5), (6) it looks like more monotone. Such effect is 
related to the complex structure of the spectrum of the 
Hamiltonian for periodic array of quantum dots (see, 
e.g., [9]). As for the comparison of tunnelling for single-
layer and double-layer cases, one observes that in the 
model with double layer, dark stripes are wider and 
inside zones between these stripes, T value is, 
generally, greater. In the case of the hexagonal lattice, 
when considering double-layer model, dark stripes pairs 
are closer to each other and value of T in zones between 
them is less than in the single-layer case. 
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