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Abstract. While cloud computing infrastructures proliferates in nowadays computing and 

communications technology there are few reports investigating models for their security. In this paper, 

new efficient models are developed and evaluated for analyzing the security-related behavior of cloud 

computing architectures and networks comprising complex interconnected communication systems 

adapted towards a generalized analysis. These cloud related models, based on Markov processes, 

allow calculation of critical security factors for the cloud infrastructure, related to intrusion detection, 

of such interconnected and distributed systems components and the evaluation of the associated 

security mechanisms. Although, at this step an architecture of at least three interconnected systems is 

analyzed, the systematic model introduced allows for a generalized model of N interconnected 

systems in a cloud architecture under reasonable assumptions. We herein show the principles of such 

an analysis. Security parameters calculation and Security mechanisms evaluation may support the risk 

analysis and the decision making process in resolving the trade-offs between security and quality of 

service characteristics corresponding to the complex interconnected computing and communication 

systems.  

Keywords. Cloud infrastructures, Security Risk Analysis, Interconnected Systems, Markov 

Processes, Intrusion Detection 

 

1. Introduction 

The increasing role of communication services makes 
crucial the issue of ensuring the security attributes of the 
underlying computing and communication infrastructures 
in terms of secrecy, integrity and availability. The 
security attacks in computer and communication systems 
may result in [1]: information disclosure, unauthorized 
modification of files, messages and transactions, 
masquerading or successful break-in, decreasing 
communication services availability, repudiation in 
sending and receiving messages of electronic orders or in 
creating and modifying files, and the possibility of traffic 
analysis and the creation of user/consumer profiles. These 
attacks may emanate from legitimate users, unauthorized 
users and processes, such as malicious software. 
Security is often cited as one of the greatest barriers to 
communications services, including Internet commerce. 
Of course, security is important to communication 
services in many ways, but it is really part of the way that 
business is enabled by the technology. Indeed, the 
security of communication systems, for instance for 
electronic commerce, is a business problem, not merely a 
technology one. Technologies such as public key 

encryption provide critical components of an overall 
solution, but they are not enough. Such technologies can 
be applied both to systems designed from scratch as well 
as to systems built around off-the-shelf products for 
Internet commerce.  The important issue is to properly 
design the whole interconnected communication system 
so that security technologies could be applied. To this end 
a significant help could be provided by attempting to 
model the system computing and communication 
infrastructure. This is precisely the goal of this paper, 
namely, to model such interconnected infrastructures in 
terms of security. 
Security violations leave abnormal patterns of system 
usage and accounting [2,3]. To cope with intrusions or 
attempted break-ins, system monitoring techniques or 
intrusion-detection mechanisms and audit trails are used, 
that rely on the collection of audit data and their 
comparison with the usage and accounting profiles 
maintained by the system [4]. The conditional probability 
of detecting an intrusion given that the intrusion has 
occurred is called intrusion coverage and used as a 
measure of the effectiveness of the intrusion-detection 
mechanism. The number of normal and abnormal usage 
and accounting types (patterns) is extremely high and 
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they can be differentiated only partially so that it is very 
difficult to have an intrusion coverage close to 1. An 
alarm is triggered if certain thresholds are reached. The 
detection sensitivity level and the false alarm rate depend 
on the thresholds set [5]. Increasing the detection 
sensitivity level leads to higher false alarm rates, i.e., 
better intrusion coverage appears to be in trade-off with 
false alarms. 
Audit trails, i.e., data that allow tracing from users and 
transactions of related processes aim at detecting or 
deterring system intrusion and helping assessing the 
damage caused by intrusions in the case of successful 
ones. Issues regarded in research efforts in the context of 
audit trails include the analysis and specification of 
auditable events and the quality improvement of the 
mechanisms related to efficiency, protection and the 
prevention of denial of service. They, also, include the 
association and analysis of related events and the 
automation of intrusion detection and damage assessment 
functions [4]. 
Intrusion detection mechanisms can be used in stand-
alone or networked systems. They are based on the 
development of user and system or network resources 
usage profiles and knowledge-oriented or statistically 
oriented methods. They have limitations, since the 
absence of rules for all possible intrusion scenarios or 
inaccurate statistical distributions do not lead to detection 
of intrusions or attempted break-ins. On the other hand, 
they may lead to false alarms, if unexpected user actions 
or resource usage patterns occur, which are not foreseen 
by the rules or the distributions used. 
To study the behavior of security attacks or intrusion 
processes, models have to be developed and used, since it 
is quite impossible to directly analyze real computer 
systems and networks or information infrastructures to 
this respect. 
In section 2, the model is described and the mathematical 
notations and the system equations are discussed. In 
section 3, we apply the model and discuss the various 
results obtained for a set of parameter values. Finally, 
section 4 summarizes this paper with conclusions and 
future directions. 
 

2. Cloud Security Models Description 
and Analysis 

 
In this research we develop and use Markov models by 
considering the states of each system component of the 
interconnected information infrastructure, which reflect 
system functioning with respect to the above stated 
possible attacks. These states are explicitly associated 
with the security attributes of secrecy, integrity and 
availability. On the other hand, the existing dependencies 
between the component systems comprising the cloud 
infrastructure are taken into account in the proposed 
models. While single system security models exist in the 
literature [4,6], the suggested models for analyzing 
security parameters in infrastructures is one of the first 
research efforts for investigating the effects of multiple 
dependent systems operation in the interconnected 

communication and information infrastructure security 
planning. 
We assume constant arrival rates of attacks and constant 
state transition rates, which allow the use of exponential 
or geometrical distributions, since there are no exact 
analytical solution methods for non-Markovian models. 
(Approximation techniques could be used in the case of 
non-constant rates.)  
 
Model A- the cloud as a single system being in 
attack 
 
Figure 1 shows the model, which relates to a single 
system and consists of 7 states. The system is in state 0 
when there are no security violations or attempted attacks. 
All security attributes are well maintained. With the first 
attempted attack, the system enters in state 1. The system 
remains in this state as long as it is under attack, the 
attacks are not detected and the system has not been 
penetrated. From this state, transition back to state 0 takes 
place if the attacks are detected or to state 2, if the 
attacker obtains authentication information and penetrates 
the system. The attacker remains in state 2 as long as he 
obtains (disclosures) confidential information and may 
move to state 3 if he starts to modify files, programs and 
messages or to state 4 if he chooses to hinder the access 
of authorized users to programs, hardware and data. 
When the attacker is detected, the system enters in the 
state 5, where it is reconfigured and transition back to 
state 0 occurs. Transition from state 0 to state 6 may take 
place if a false alarm is triggered. After the 
reconfiguration the inverse transition occurs. Transitions 
between states 2, 3 and 4 take place according to the 
actions of the attacker, which lead to unauthorized 
information disclosure, modification and access to system 
or network resources, respectively. 
 
Notation and system of equations 
 
In this research we use the following notation, which is 
common in textbooks on stochastic processes, queueing 
theory and Markovian chains in particular [7]. 
λij, is the transition rate from state i to state j, τij, is the 
transition probability from state i to state j and Pi, is the 
probability of the system or network or infrastructure to 
be in state i (steady state).  
From the state-transition-rate diagram shown in Fig. 1, it 
is obvious that the Markov chain is irreducible and we 
accept the limit that Pk =lim Pk(t) as t. In the 
equilibrium case we are interested in that the flow must 
be conserved in the sense that the input flow must equal 
the output flow for any given state. By inspection we can 
establish the following equilibrium (steady-state) 
equations for the cloud model A. 
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By means of this model we may analyze the systems 
comprising an interconnected information infrastructure 
separately. The security-related dependence between 
these systems can be taken into account if we adapt the 
probability transitions from state 1 to state 2 of the 
controlled system by adding to its initial value the 
equilibrium probability of the controlling system being in 
state 2. 
We assume that successful attacks in the various systems 
are independent. However, if the controlling system is 
penetrated, the controlled system may be penetrated 
immediately or with higher probability than when it is 
attacked directly and not through the controlling system.  
 
 
 
 
 
 
 
 
 

 
 
 
 

Fig. 1. State-transition-rate for the diagram of model A for the 
cloud modelled as a single system 

 

However, the cloud is an interconnected system of let’s 
say N components. In order to find out the related 
probabilities for every component we could assume that 
all components are independent, each corresponding to a 
probability Pc(state-k), with probabilities Pc(state-k) 
being equal  for all components c, and for every state k of 
the above defined system of equations.  In order to 
estimate Pc(state-k) from the relevant P(state-k) of the 
cloud system, after solving the previously mentioned 
equations, we have to model the events involved for 
c=1..N and k=0..6.  Under these assumptions we could 
have, involving the theory of total probability for 
independent and mutually disjoint events, since each 
cloud component state could be considered as such 
compared to the rest of cloud components,  
 
P(state-k)= P(all possible combinations of events for 
c=1..N components being in state k) => 
 
P(state-k) = C(N,1)* Pc(state-k) (1-Pc(state-k))(N-1) + 
C(N,2) * Pc(state-k)2 (1-Pc(state-k))(N-2) +  C(N,3) * 
Pc(state-k)3 (1-Pc(state-k))(N-3) + …C(N,r) * Pc(state-k)r 
(1-Pc(state-k))(N-r) + ….. C(N,N) * Pc(state-k)N (1-
Pc(state-k))(N-N)                              (8) 
 
where it is known that, 
 C(n,r)=n!(r!(n-r)!)   
 
If P(state-k) is known by solving the previously mentioned 
Markov process based system of Model A, then every       
Pc(state-k) can be calculated solving equation    (8). 

 

 

 
Initial Ad-Hoc Model B for cloud in intrusion 
 
The interconnected communication and information 
infrastructure is modeled by a Markovian chain again for 
two non local systems under the same cloud. In this case 
an Ad Hoc analysis and model is presented, where some 
states are omitted. In the general form, the model relates 
to n systems and m states of each system, which may lead 
to mxn states of the Markovian chain if transitions from 
all states to all others are possible. We assume Markov 
chains which are irreducible and for which exists the limit 
Pk =lim Pk(t) as t->∞ for all states k.  
Figure 2 shows the initial model B, which relates to two 
systems or networks comprising an information 
infrastructure and consists of 12 states. The systems are in 
state (0,0) when there are no security violations or 
attempted attacks. With the first attempted attack, the 
attacked systems enter in state (1,0) or (0,1) if it is the 
first or the second system attacked. From this, state 
transition to state (1,1) may occur if both systems are 
under attack. Transition to state (2,0), (2,1) or (0,2),  (1,2) 
takes place if the attempted intrusion leads to successful 
penetration of the first or the second system, respectively. 
If one of the systems is occupied then the second system 
is penetrated as well, (2,2). From this, state transition to 
state (3,3) occurs when the penetration is detected. After 
the reconfiguration of the systems, state (0,0) is entered. 
From state (0,0) transition may occur to state (4,0) or 
(0,4) if a false alarm of the first or the second system is 
flagged.  
After the false alarm is resolved current state becomes the 
(0,0). From Fig. 2 we obtain the following equilibrium 
equations by simplifying the numbering of the states in an 
ad hoc way as follows:    (0,0) – 0, (1,0) – 1, (0,1) – 2, 
(1,1) – 3, (2,0) – 4, (0,2) – 7, (2,1) – 5, (1,2) – 6, (2,2) – 8, 
(3,3) –– 9, (4,0) – 10, (0,4) – 11. 
If p is the matrix of the transition probabilities and P the 
vector of the steady state probabilities then, the following 
equation holds, as it is known:      pP=P 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. State-transition-rate diagram of an initial model B 
for two interconnected systems or networks of the same 
cloud infrastructure. 
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We solve the above equations for steady-state 
probabilities. From these we may calculate the 
probabilities for each system of the underlying 
interconnected cloud communication and information 
infrastructure. 
 
However, again, this model B based cloud infrastructure 
is an interconnected system of let’s say N components. In 
order to find out the related probabilities for every such 
component we could assume that all components are 
independent, as in  model A, each corresponding to a 
probability PBc(state-k), with probabilities PBc(state-k) 
being equal  for all components c, and for every state k of 
the above defined system of equations.  In order to 
estimate PBc(state-k) from the relevant PB(state-k) of the 
cloud system, after solving the previously mentioned 
equations, we have to model the events involved for 
c=1..N and k=0..12.  Under these assumptions we could 
have, involving the theory of total probability for 
independent and mutually disjoint events, since each 
cloud component state could be considered as such 
compared to the rest of cloud components,  
 
PB(state-k)= P(all possible combinations of events for 
c=1..N components being in state k) => 
 
PB(state-k) = C(N,1)* PBc(state-k) (1-PBc(state-k))(N-1) + 
C(N,2) * PBc(state-k)2 (1-PBc(state-k))(N-2) +  C(N,3) * 
PBc(state-k)3 (1-PBc(state-k))(N-3) + …C(N,r) * PBc(state-
k)r (1-PBc(state-k))(N-r) + ….. C(N,N) * PBc(state-k)N (1-
PBc(state-k))(N-N)                              (21) 
 
where it is known that, 
 C(n,r)=n!(r!(n-r)!)   
 
If PB(state-k) is known by solving the previously mentioned 
Markov process based system of Model A, then every       
PBc(state-k) can be calculated solving equation    (21). 
 

 
 
 

A systematic Model B for cloud in intrusion- 
Towards a Scalable Analysis for interconnected 
cloud subsystems 

 
In this interconnected cloud model, again, the 
communication and information cloud infrastructure is 
considered as a Markovian chain moxdel. In the general 
form, the model relates to n systems and m states of each 
system, which may lead to mxn states of the Markovian 
chain if transitions from all states to all others are 
possible. We herein employ, however, a scalable model 
B, which leads to more unknown variables than the 
previous initial model B but it leads to a better, scalable 
and more systematic model B of two interconnected 
system than before. We assume again Markov chains 
which are irreducible and for which exists the limit Pk 
=lim Pk(t) as t->∞ for all states k. 
 
Figure 3 shows the model, which relates to two systems 
or networks comprising an information infrastructure and 
consists of 14 states. Figure 3 can be obtained from figure 
1 and it is its generalization for two interconnected 
systems. It bares similarities with figure 2 architecture, 
which is ad hoc. Such a systematic view could lead to 
other possible meaningful generalizations. Taking into 
account that mn states of the Markovian chain if 
transitions from all states to all others are possible, this 
means that in our case 72 = 49 states would exist. 
However, the proposed meaningful generalization of 
model A, in the case of two interconnected systems, 
leads, as we will see in m x n = 14 states only. The 
systems are in state (0,0) when there are no security 
violations or attempted attacks. With the first attempted 
attack, the attacked systems enter in state (1,0) or (0,1) if 
it is the first or the second system attacked. From this, 
state transition to state (1,1) may occur if both systems are 
under attack. Transition to state (2,0), (2,1) or (0,2),  (1,2) 
takes place if the attempted intrusion leads to successful 
penetration of the first or the second system, respectively. 
If one of the systems is occupied then the second system 
is penetrated as well, (2,2). The attacker remains in state 
(2,2) as long as he obtains (disclosures) confidential 
information and may move to state (3,3) if he starts to 
modify files, programs and messages or to state (4,4) if he 
chooses to hinder the access of authorized users to 
programs, hardware and data. When the attacker is 
detected, the system enters in the state (5,5), where it is 
reconfigured and transition back to state (0,0) occurs. 
After the reconfiguration the inverse transition occurs. 
Transition from state (0,0) to state (6,0) or (0,6) may take 
place if a false alarm of the first or the second system is 
flagged. 
 
After the false alarm is resolved current state becomes the 
(0,0). From Fig. 3 we obtain the following equilibrium 
equations by simplifying but in a systematic way easily 
shown below, the numbering of the states:          
 
(0,0) – 0, (1,0) – 1, (0,1) – 2, (1,1) – 3, (2,0) – 4, (2,1) – 5, 
(0,2) – 6, (1,2) – 7, (2,2) – 8, (3,3) –– 9, (4,4)-10, (5,5)-
11, (6,0) – 12, (0,6) – 13. 
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Fig. 3. State-transition-rate diagram of model B for two 
interconnected subsystems of the cloud infrastructure. 

We solve again the above equations for steady-state 
probabilities. From these we may calculate the 
probabilities for each system of the underlying 
interconnected communication and information cloud 
infrastructure.  
 
As in the previous initial model B, if we define PB(state-
k) the estimated steady state probabilities acquired by 
solving the system of equations 22-35 above, then every  
PBc(state-k), which is the relevant probability of state 
k=0..13 of each cloud infrastructure component c=1..N 
can be calculated solving equation    (21) again. 

 
 

2. Preliminary Numerical Examples 
using Excel 

 
The selection of the parameter values is based on the tests 
and results of [4,5]. For model A, we assume transition 
rates equal to 1 per day from states 0 and 1, transition 
rates equal to 25 from states 2, 3, 4, 5, and 8 to all others 
and transition probabilities, τ01 = 1-τ06, τ10 = 1-τ = 0.1, 
τ23= τ24= τ32= τ34= τ42= τ43=(1-τ)/2, 
τ12=τ25=τ35=τ45=τ, τ50=τ60=1, τ=0.2,……,1.0 
(intrusion coverage). In the same way, for model B we 
assume transition rates per day λ01= λ13= λ14= λ02= 
λ27=λ23= λ89= λ0,10= λ10,0= λ0,11= λ11,0=1, λ10= 
λ20=12, λ48= λ35= λ36= λ58= λ68=25, λ78= λ90=3  and 
transitions probabilities, τ01=(1- τ0,10)/2 , τ13= τ14= 
τ27= τ23=0.1, τ02=1- τ0,10 , τ10= τ20=0.9, τ48= τ68= 
τ58= τ78= τ89= τ90= τ10,0= τ11,0=1, τ35= τ36=0.08, 
τ0,11= τ0,10= τ (false alarm rate) and τ = 0.0,…,0.08   
 
With these assumptions we have obtained preliminary 
numerical results, involving Excel, shown in the next two 
diagrams, which validate our interconnected 
communication and information cloud infrastructure 
modelling approach, in terms of results compatible with 
that of literature for single systems. 

 
 
Fig. 4. Steady state probability of intrusion for model A as a 
function of intrusion coverage 

Fig. 5. Steady state probability of intrusion for both cloud 
models B as a function of intrusion coverage 

   

2 

    

7 

  

5 

   

4 
   

1 

   

1
2   

1
3 

   

0 
 

   

3 

   

6 

  

8 

  

9 

  

1
0 

  

1
1 

 

(35)                                                                

(34)                                                                

(33)                       

(32)                     

(31)              

(30)        

(29)                                                                          

(28)                                                                          

(27)                                                                          

(26)                                                                           

(25)                                            )(

(24)                                                          )(

(23)                                                            )(

(22)            

013,013,0130,130,13

012,012,0120,120,12

811,811,8911,911,91011,1011,10110,110,11

910,910,9108,108,101011,1011,10109,109,10

109,109,1088989911,911,9910,910,999898

77878668685585844848811,811,888989

3373777878

2262666868

3353555858

1141444848

2232311313337373535

00202226262323

00101114141313

130,130,13120,120,12110,110,112202011010

013,013,012,012,002020101

PP

PP

PPPP

PPPP

PPPPP

PPPPPP

PP

PP

PP

PP

PPP

PP

PP

PPPPP

P





























































5

  
 

  
DOI: 10.1051/, 03006 (2017) 7090ITM Web of Conferences 9

AMCSE 2016

itmconf/201 3006



 

Discussion and Prospects 
 
In this research we presented three models for the analysis 
of cloud security-related attack processes by means of 
Markovian chains. The first model is proposed for use in 
the analysis of the cloud considered as a single system or 
network, while the second in the analysis of the cloud 
considered involving two interconnected systems or 
networks. The second model is an ad hoc initial model 
aimed at minimizing analysis costs, while the third one is 
a more detailed model defined towards a generalized 
model of security analysis for cloud involving 
interconnected systems. The models allow for the 
calculation of the expected probabilities of the systems to 
be in various states such as safe-state, under attack, in 
intrusion state and in false-alarm-state. For each such 
state and for each model we have estimated cloud 
components relevant probabilities. Future work will aim 
at generalizing, especially the third model, for N cloud 
interconnected subsystems as well as at expanding the 
models with respect to the probability distributions used. 
Also, future work will aim at the development of 
simulation models for the analysis of the security-related 
behaviour of cloud information infrastructures in complex 
communication systems, and as a validation tool for the 
analytical models. Furthermore, the involvement of neural 
networks and computational intelligence techniques for 
approximating the generalized probability distributions in 
the analytical models, might be investigated. 
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