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Abstract. The paper discusses the problem of aircraft parameter identification in conditions of 
measurement noises. It is assumed that all the signals involved into the process of identification are subjects 
to measurement noises, that is measurement random errors normally distributed. The results of simulation 
are presented which show the relation between the noises standard deviations and the accuracy of 
identification. 

1 Introduction 
Identification of aerodynamic parameters could [1–3] be 
effective for estimating the technical state of the aircraft 
and the on-board systems [4, 5]. In this paper the aircraft 
motion model is formulated which includes the flight 
parameter sensors and pilot control inputs. For 
simulation of  the  measurement noises, the normally 
distributed discrete random variables with different 
standard deviations are used.  

2 Simulation of the motion of the 
aircraft 
The input signal (��), generated by the pilot action, is 
shown in Fig. 1. 

 

Fig.1. The input signal formed by the action of the pilot. 
 
For simulation, it is necessary to form the object 

model and to know the output signals. For the formation 
of object model, the equations for angle of attack and 
angular velocity of pitch of the aircraft are used. The 
mathematical formulas in discrete form for the angle of 
attack (1) and angular velocity of pitch (2) are written as 
follow �(����) = �(��) + ∆�[−
� �(��) + �
(��) −−
��(��)]                                                                    (1) 

�
(����) = �
(��) + ∆���
� �(��) + �
���
(��) −−�
��(��)�.                                                                  (2) 
Where, �(����) – angle of attack for time instant (�(���)) 
(radian); �
(����) – angular velocity of pitch for time 
instant (�(���))  (radian/s); �(��) – angle of attack for 
time instant(��); �
(��) – angular velocity of pitch for 
time instant(��); ∆� = ���� − �� – time discretization 
interval, 
� , 
� , �
�, �
��, �
� – aerodynamic 
parameters to be identified. 

For simulation it was assumed that the registration 
frequency (f-registration) is 32 Hz. Therefore,  the  time 
sampling  interval was ∆� = 1/32  s.  As a first step the 
input signal (φ�), angle of attack (1), and the angular 
velocity of pitch (2) are simulated without any 
measurement noises. And the simulated signals without 
measurement noises are shown in Fig. 2. 

 

Fig.2. Simulation of the signals without any noises. 
 

After simulation, the measurement of the input 
signal, angle attack (1) and angular velocity of pitch (2) 
with measurement noises is performed. The input signal, 
angle of attack and angular velocity of pitch after being 
measured with noises are shown in Fig 3. 
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Fig.3. The input signal (��), angle of attack and angular 
velocity after the measurement with noises 

3 Identification of aerodynamic 
parameters
For the identification of parameters, it is necessary to 
form the object model. Let us consider every equation of 
the object model separately. In general form for an 
arbitrary instant �� it may be expressed as follows 
(��) = �� + ����(��) + ����(��) + ���� (��),    � =    1,2, … �.              
Where ��, ��, ��, �� - parameters to be identified;� − number of samples.             

The object model for identification  can be used as  a 
matrix X and a vector Y : 

           � = �1 ���(�) ���(�)1 ���(!)… ���(!)…1 ���(") ���(")
    ���(�)���(!)...���(")

#                       (3)
$ = �
(��)
(��)…
(�%)#.                                       (4)

Where, X – matrix for object model, Y – vector for 
output signal.

In order to form the matrix X for the first equation, 
the input signals (��), angle of attack (1), and angular 
velocity of pitch (2) are used. For the formation of 
output matrix Y (4) it is better to use the overload, which 
may be expressed as follow &'(��) = *-0 (
��(��) + 
��(��))5 + 6(��)          (5) 
Where, &'(��) – overload with specific noise for time 
instant (��), V – airspeed (ms-1), g – gravitational 
acceleration (ms-2), 6(��) – normally distributed random 
error.

For the purposes of identification it is better to 
present the second  equation  in the form7�(�8)7� = �
� �(��) + �
���
(��) − �
��(��) (6)

In this case, the matrix X  is the same as in the first 
equation,  and the output vector Y  consists of the 
estimates for angular velocity time derivative 9�(��)9� = �(����) − �(��:�)2∆�

After forming all the required matrixes, the least 
square method (LSM) is used for parameter estimation.
This least square method (LSM) is more effective for  
linear systems. The system which is used in this work is 
also linear. The least square method is given by 
                         �; = (<><):�<>
                                  (7) 
Where, �; – estimates of the parameters; X – matrix for 
object model; Y – vector for output signal.

In order to investigate statistically the accuracy of the 
parameter estimation and the influence of measurement 
noises, the simulation data and the processing of this 
data by least square method (LSM) were repeated many 
times. All the signals involved were distorted with 
simulated noises, normally distributed. In this work, the 
experiments were carried out for 6 different levels of the 
noises standard deviations,  20 independent tests for each 
level. For each test the LSM estimates of aerodynamic 
parameters were calculated. Then out of these 20 
samples for each aerodynamic parameter  the means and 
standard deviations of the estimates were determined.  

It should be explained that a widely known formula 
[1] associated with the matrix (X?X):� for the LSM 
estimates errors dispersion,  is valid in the case of output 
measurements noises only. In this paper we assume that 
all the signals used for identification are affected by 
measurements errors. For this reason we apply the 
statistical simulation in order to investigate the accuracy 
of the estimated parameters. 

4 Analysis of the influence of error
The relative errors for all the estimated parameters are 
calculated by the following formula 

           @ = AB;:BCDEFBCDEF G 100%                               (8)
Where, �; – the identification estimate of a model 
parameter; ��KLM – the true value of the parameter used 
in the model while generating the test data.

For each test the means and standard deviations of 
the relative errors were determined. It is noticeable, that 
the standard deviation of the measurement noise, that is 
normally distributed random errors, can influence the 
accuracy of the estimated parameters. By varying the 
value of standard deviations of these random errors, we 
could easily notice the different values of the estimated 
parameters. The relative errors of the estimated 
parameters. The relative errors of the estimated 
parameters are shown in Fig. 4,  where Sigma is the 
coefficient proportional to the standard deviation of the 
measurement noises.

The further analysis of the relative errors is 
performed for each of estimated parameters in order to 
know the identification accuracy and to see clearly the 
confidence boundaries for each estimated parameter. The 
confidence interval boundaries for the 95% confidence 
probability are calculated as follows:  N�OP = �[@] + 1.96S[@] N�O0 = �[@] − 1.96S[@]                         (9)
Where, N�OP ,   N�O0 – 95% confidence interval 
boundaries for an estimated parameter; �[@]– mean
relative error of an estimated parameter, based on 20 
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independent tests for each level of the measurement 
noise; S[@] – standard deviation of a relative error, based 
on 20 independent tests for each level of the 
measurement noise.

Fig.4. Relative errors of the estimated parameters 

The results are presented in Fig. 5–9. The general 
trend is evident: еру larger is the value of Sigma, that is 
the level of  measurement noises, the broader are the 
confidence boundaries.

Fig.5. Mean relative error  and 95% confidence interval 
boundaries for (
�). 

Fig.6. Mean relative error  and 95% confidence interval 
boundaries for ( 
�).

Fig.7. Mean relative error  and 95% confidence interval 
boundaries for ( �
�).

Fig.8. Mean relative error  and 95% confidence interval 
boundaries for ( �
��).

Fig.9. Mean relative error  and 95% confidence interval 
boundaries for  ( �
�).

The above figures present the influence of the 
average level of noises. In some cases it’s better to 
investigate the influence of  noise to signal relation. This 
relation can be express asT = U VWZ8\FV\8^W_`c × 100%                               (10) 

Where, K – relation between noise and signal, Sdg�hM –
standard deviation of noise, Sh�0dBi – standard deviation 
of signal.
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The results are presented in Fig. 10–14, where in 
Fig. 10 and Fig. 12 we use noise to signal relation for 
angle of attack, in Fig. 13 – for angular velocity of pith, 
and in Fig. 11 and Fig. 14 for input signal (φ�).

Fig.10.  Mean relative error  and 95% confidence interval 
boundaries depending on the relation between noise and 
signal (K) for (
�). 

Fig.11. Mean relative error  and 95% confidence interval 
boundaries depending on the relation between noise and 
signal (K) for (
�).

Fig.12 Mean relative error  and 95% confidence interval 
boundaries depending on the relation between noise and 
signal (K) for ( �
�).

Fig.13. Mean relative error  and 95% confidence interval 
boundaries depending on the relation between noise and 
signal (K) for (�
��).

Fig.14. Mean relative error  and 95% confidence interval 
boundaries depending on the relation between noise and 
signal (K) for (�
�).

5 Conclusion 
The obtained experimental results show that the 
proposed method of identification for estimating 
aerodynamic parameters can assure the high accuracy of 
estimation at considerable levels of noise to signal 
relation. 
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