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Abstract. The virtual machine placement is closely related to the efficient and balanced 
utilization of physical resources. In this paper, the influence of two scenarios about resource 
utilization on load balancing is analyzed. A multi-objective ant colony optimization algorithm 
is proposed to solve the virtual machine placement problem, which balances the load among 
physical machines and the internal load of physical machine simultaneously. The proposed 
algorithm is compared with two single objective ant colony optimization algorithms, first fit 
algorithm and greedy algorithm under some instances. The results show that the proposed 
algorithm can search and find solutions that exhibit good balance among objectives while 
others cannot. This demonstrates the proposed algorithm can balance the load in the process of 
mapping virtual machines to physical machines. 

1. Introduction 
Cloud computing [1] as a new service model can effectively cope with mass data processing and 
computing needs by integrating Internet resources. Cloud computing [2] can be roughly classified into 
three types according to the service type: Infrastructure as a Service (IaaS), Platform as a Service 
(PaaS) and Software as a Service (SaaS). The virtualization [3] technology can divide physical 
resources into isolated virtual machines, which meet the demand of users to improve the utilization of 
resources and reduce the investment in infrastructure. The isolated virtual machines make it possible 
for different applications to run on the single server. The high load will affect the performance of 
upper applications, and the low load will not make full use of the limited resources, so optimal virtual 
machine placement closely related to the balanced utilization of resources is very important. 

A lot of research has been devoted to solve the virtual machine placement problem in a data center. 
Virtual machine placement is often modeled as bin packing problem [4], and some solutions combine 
the classic algorithms for bin packing problem, such as First Fit Decreasing (FFD) [5] and Best Fit 
Decreasing (BFD) [6]. In [7], the relationship among power consumption, resource utilization and 
performance has been studied. Power consumption optimization algorithm is proposed through 
modeling as bin packing problem. Beloglazov et al. [8] proposed Modified Best Fit Decreasing 
(MBFD) algorithm to solve the virtual machine placement problem based on CPU utilization. Virtual 
machine placement belongs to combinatorial optimization problem, so the improved algorithm can 
combine with genetic algorithm [9], ant colony algorithm [10] or particle swarm optimization 
algorithm [11] which is effective to the problem. In [12], a two-level control system is proposed to 
manage the mappings of workloads to virtual machines and virtual machines to physical resources. An 
improved multi-objective genetic algorithm is proposed to minimize total resource wastage, power 
���������������������������������������� �������������������� �
a Corresponding author: bbqu@hust.edu.cn 

    
DOI: 10.1051/, 01011 (2017) 7110101111ITM Web of Conferences itmconf/201

IST2017

 
  © The Authors,  published  by EDP Sciences.  This  is  an  open  access  article  distributed  under  the  terms  of the Creative

Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/). 



consumption and thermal dissipation costs. In [13], a prototype virtual machine packing optimization 
mechanism on Grivon is implemented. Genetic Algorithm (GA) method is employed to avoid SLA 
(Service level agreement) violation, reduce number of real nodes in use and reduce virtual machine 
migrations. Feller et al. [14] proposed Energy-Aware ACO-based Workload Consolidation algorithm 
minimizing the number of physical machines required. In [15], a multi-objective ant colony system 
algorithm for virtual machine placement in cloud computing is proposed to minimize resource 
wastage and power consumption. In [16], to reduce energy consumption in cloud data center, an 
energy efficient virtual machine allocation algorithm is proposed based on a proposed energy efficient 
multi-resource allocation model and the particle swarm optimization (PSO) algorithm. 

Most research on virtual machine placement only considers the initial scenario that the resources 
of physical machines are all idle. In the real scenario, the load of physical machines being dynamic, 
the virtual machine would be deployed to the physical machine with low load preferentially. Under 
the condition of a certain number of virtual machine requests, minimizing the number of physical 
machines to achieve energy efficient goal will also affect the balanced utilization of resources. This 
paper will study the problem in the general situation, namely the part of physical machine resources is 
already used. The designed algorithm in this paper is to make the utilization of physical machine 
resources as balanced as possible, so more needs are met under the condition of limited resources. 

This paper is organized as follows. The second part makes a brief introduction on the ant colony 
optimization algorithm and multi-objective optimization. The third part describes and formulates the 
virtual machine placement problem. In the fourth part, multi-objective ant colony algorithm for load 
balancing is proposed in detail to solve the problem. In the fifth part, the proposed algorithm is 
compared with two single objective ant colony optimization algorithms, first fit algorithm and greedy 
algorithm to verify the effectiveness of the algorithm. The sixth part is the conclusion of this paper. 

2 Backgrounds 

2.1 Ant colony optimization algorithm 

Inspired by the collective behavior of real ant colony, Dorigo proposed ant colony optimization 
algorithm [10] systematically. The mechanism of ant colony optimization algorithm consists of two 
basic stages: adaptation phase and cooperation stage. In the adaptation phase, each candidate solution 
according to the accumulated pheromone adjusts the structure itself. On the one hand, the amount of 
pheromone will be greater if more ants pass through the path, and the probability of the path selected 
will be larger. On the other hand, the pheromone will evaporate over time. In the collaboration phase, 
candidate solutions communicate through pheromone to get the desired solution with better 
performance. The self-organization mechanism of the algorithm does not need to understand every 
aspect of the problem in detail, so it is effective to solve many combinatorial optimization problems. 

2.2 Multi-objective optimization  

Many scientific and engineering problems can be modeled as a multi-objective optimization problem 
[17] which is different from the single objective optimization problem. Performance improvement of 
one objective may result in performance degradation of other objectives, so it is very difficult or 
impossible to optimize multiple objectives simultaneously. The feasible solutions of multi-objective 
optimization problem form a Pareto [18] set. Generally speaking, the multi-objective optimization 
problem with n decision variables andm objective functions can be expressed as follows. 

min y = f (x) = [ f1(x), f2 (x),�, fm(x)]
s.t. gi (x) ≤ 0, i =1,2,�, p

hj (x) = 0, j =1,2,�,q

 (1) 
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In expression (1), the decision vector is x = (x1, x2 ,�, xn )∈ X , and the objective vector is

y = ( f1, f2 ,�, fm )∈Y . X is the decision space of decision vector, andY is the objective space of 
objective vector. gi (x) ≤ 0(i =1,2,�, p)  defines p inequality constraints, and q equality constraints are 
defined by hj (x) = 0( j =1,2,�,q) .The following concepts [18, 19] is often used. 

Pareto dominance: 0x  dominates 1x ( x0 � x1 ), if and only if 

fi (x
0 ) ≤ fi (x

1), ∀i ∈{1,2,�,m} 
f j (x

0 ) < f j (x
1), ∃j ∈{1,2,�,m}. 

Pareto optimality: 0x is Pareto optimal if and only if ¬∃x1 : x1 � x0 . 

Pareto optimal set: The set of all Pareto optimal solutions is Pareto set P={x0|¬∃x1 : x1 � x0} . 

3 Problem description and formulation 

3.1 Problem description 

Considering two scenarios about resource utilization, one scenario is that the utilization of one 
physical machine is far greater than the utilization of another for a long time, and the virtual machine 
migration [20] is usually used to balance load for such cases. The number of migrations should be 
reduced as much as possible because of the high costs. Such result is described as the load imbalance 
among physical machines. Another scenario is that the utilization of one certain resource is much 
larger than other resources’ in a physical machine. This would lead to the fact that the physical 
machine cannot satisfy the virtual machine resource requirements, resulting in a waste of resources. 
Such result is described as internal imbalance load in a physical machine. 

The virtual machine placement problem is actually to determine the mapping relationship between 
virtual machines and physical machines, and the mapping relationship between virtual machines and 
physical machines is multi-to-one. This paper will study that the multiple virtual machines are placed 
on a certain number of physical machines in the general situation. The goal is to make the load among 
physical machines and internal load as balanced as possible to achieve efficient and balanced 
utilization of physical resources so that more needs are met under the condition of limited resources. 

3.2 Problem formulation 

Virtual machine set is defined as VM = vm1,vm2 ,�,vmM{ } . Physical machine set is defined as

PM = pm1, pm2 ,�, pmN{ } . M is the number of virtual machines and N is the number of physical 

machines. The types of resources include CPU, memory, storage and bandwidth. The resource request 
vector of virtual machine ivm  is defined as Ri = (Ri

1,Ri
2 ,Ri

3,Ri
4 ) . The available resource vector of 

physical machine jpm is defined as Aj = (Aj
1, Aj

2 , Aj
3, Aj

4 ) . The total resource vector of physical 

machine jpm is defined as 1 2 3 4( , , , )j j j j jS S S S S= . The resource utilization vector of physical machine

jpm is defined as 1 2 3 4( , , , )j j j j jU U U U U= , where ( ) / ( 1,2,3,4)d d d d
j j j jU S A S d= − = . 

When all virtual machines are placed on a certain number of physical machines, the resource 

utilization of each physical machine forms a matrix defined as UN×4 = U1,U2 ,�,U N( )
T .The average 
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utilization of each dimension is defined as the Eq. (2), and d represents the dimension of resource. 

1

1 , ( 1,2,3,4)
N

d d
j

j
Avg U d

N =

= =∑  (2) 

The average resource utilization vector of all physical machines is defined as Eq. (3). 

1 2 3 4( , , , )Avg Avg Avg Avg Avg=  (3) 

To measure the load balancing degree of physical machines in data center comprehensively, the 
load among physical machines and the internal load are considered. In order to reflect the degree of 
load balancing among the physical machines, the Outer load Balancing Degree(OBD) is defined as 
the average of Euclidean distance between each physical machine resource utilization vector and the 
average resource utilization vector of all physical machines. Details are shown in Eq. (4).  

4
2

1 1

1 ( )
N

d d
j

j d
OBD U Avg

N = =

= −∑ ∑  (4) 

In order to reflect the load balancing degree of different resources in the physical machine, the 
Internal load Balancing Degree(IBD) is defined as the average value of the standard deviation of the 
resource utilization of each physical machine. Details are shown in Eq. (5). 

4 4
2

1 1 1

1 1 1( )
4 4

N
d d
j j

j d d
IBD U U

N = = =

= −∑ ∑ ∑  (5)
 

Based on the above analysis and parameter definition, the problem can be formulated as follows.  
 

1

1

min min (6)

PM, ( 1,2,3,4) (7)

1,

Goals:

Constrains:

is placedif
(8)

0, else

VM, 1 (9)

( 1,2,3,4)

o

(10)

n

M
d d

j i ij j
i

i j
ij

N

i ij
j

d d
i j

OBD and IBD

pm R A d

vm pm

vm

R A d

δ

δ

δ

=

=

∀ =

⎧⎪
= ⎨
⎪⎩

∀ ∈ =

≤ =

∑

∑

�

�

�

�

 

 
Expression (6) is to optimize two objectives simultaneously. Constraint (7) and (8) indicate that for 
each physical machine, the total resources of virtual machines placed on the physical machine do not 
exceed the available resources. Constraint (8) and (9) indicate that a virtual machine will eventually be 
placed on a physical machine. The virtual machine can be placed on the physical machine 
on condition that the Constraint (10) is satisfied. For each virtual machine, a corresponding set of 
candidate physical machines is established, and each physical machine in the set satisfies the 
constraint condition (10). Once a physical machine is selected, the available resource is updated until 
all virtual machines are placed. A feasible solution of the problem is the mapping of all virtual 
machines and their corresponding physical machine.  
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4 Multi-objective ant colony optimization algorithm  

4.1 Heuristic function and selection strategy 

In the process of virtual machine placement, the heuristic function can help the virtual machine select 
the appropriate physical machine. Eq. (11) defines the matching distance between the virtual machine 
and the physical machine, and Eq. (12) defines the heuristic function. 

cos ,ij i jd R A= < >  (11) 

4

1

1( ) (1 )
4

d
ij j ij

d
t U dη

=

= − ⋅∑  (12) 

There are two reasons about constructing the heuristic function. On the one hand, when the value 
of ijd is greater, the proportion in all dimensions between iR and jA is more similar, so that can make 
the internal load more balanced, and the cosine of vectorial angle can eliminate the resource 
dimension. On the other hand, the heuristic function tends to choose the underloaded physical 
machine, so that can make the load among physical machines more balanced.  

For virtual machine ivm , ant k selects the physical machine jpm with the probability k
ijp in the set 

of candidate physical machines iAllowed . k
ijp  

is defined as Eq. (13). 

[ ] [ ]
( ) ( )

,
( ) ( )( )

0,
i

ij ij
ik

is isij
s Allowed

i

t t
j Allowed

t tp t

j Allowed

α β

α β

τ η

τ η
∈

⎧ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎪ ∈⎪
= ⎨
⎪
⎪ ∉⎩

∑  (13) 

In Eq. (13), iAllowed  is the set of candidate physical machines of virtual machine ivm . ( )ij tτ  is 

the amount of pheromone between the virtual machine ivm  and the physical machine jpm , and 

(0)ij Cτ = where C is a constant. ( )ij tη  is the heuristic function value between ivm  and jpm . α

is the pheromone heuristic factor, and β  is the visibility heuristic factor, which indicate the relative 
importance of pheromone and heuristic function respectively. The virtual machine ivm selects the 

physical machine jpm by the roulette wheel algorithm. [ )0,1r∈ is generated randomly, and physical 

machine jpm is selected if the cumulative probability ( ),
j

k
is i

s
p t s Allowed∈∑  is not less than r . 

4.2 Maintenance of Pareto optimal set and pheromone updating 

At the end of each cycle, the number of feasible solutions obtained is equal to the number of ants at 
most, and each feasible solution Si should be judged by the following steps to obtain a temporary 
Pareto optimal set. For each element in the temporary Pareto optimal set, the same method is used to 
maintain the global Pareto optimal set. Figure 1 is the main process for maintaining Pareto optimal 
set. 
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1. boolean flag=false; 
2. for S j in P  /* P is a Pareto optimal set */ 

3.    if Si dominates S j  

4.      Remove S j from P; 

5.    else if S j dominates Si  
6.      flag=true; 
7.      break; 
8.    end if 
9. end for 
10. if(!flag) 
11.    add Si to P; 
12. end if 

Figure 1. The process for maintaining Pareto optimal set. 

( )k
ij tτΔ is the increment of pheromone between ivm and jpm  defined as the Eq. (14) which 

considers the two objectives IBD and OBD . 

feasible1/ 1 / , if the solu Ption i areto optimal
0, else

s
( )k

ij

IBD OBD
tτ

+⎧
Δ = ⎨

⎩
 (14) 

1

( 1) (1 ) ( ) ( )
A

k
ij ij ij

k
t t tτ ρ τ τ

=

+ = − + Δ∑  (15) 

The pheromone is updated after the completion of one cycle by Eq. (15). In Eq. (15), ( )0,1ρ∈  is 
pheromone evaporation coefficient, and A is the total number of ants. 

4.3 Deterministic virtual machine placement  

For multi-objective optimization problems, the number of solutions is usually more than one. 
Considering the target weight is not easy to determine, this paper uses the stratified sequencing 
method to obtain the deterministic solution. The method is to rank all the objectives according to their 
importance, and then to obtain the set of optimal solutions for the most important objective, and to 
obtain the set of optimal solutions for the next objective on the basis of the previous set until the last 
objective. In the process of selecting the deterministic solution, the importance of the objective OBD 
is higher than that of the objective IBD, so the solution with minimum objective OBD is selected as 
the deterministic solution of the problem when the stratified sequencing method with two objectives is 
used. Figure 2 is the algorithm description. The deterministic solution is defined as S. 
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Input:  VM, PM,α , β , ρ , A, G ,C 
Output:  S 
1. for i=1 to G 
2.    for j=1 to A 
3.       for vm in VM 
4.           select pm according to Eq.(13) 
5.           update available resources of pm 
6.           maintain the set of candidate physical machines for virtual machines 
7.       end for 
8.       calculate the value of objective functions 
9.    end for 
10.    maintain global Pareto optimal set 
11.    update the pheromone according to Eq.(14) and Eq.(15) 
12. end for 
13. return S  /* the deterministic solution*/ 

Figure 2. The algorithm for virtual machine placement. 

VM is virtual machine set. PM is physical machine set. α is pheromone heuristic factor. β is 
visibility heuristic factor, ρ is the pheromone evaporation coefficient. A is the number of ants. G is 
cycle times for algorithm. C is the amount of initial pheromone. In each cycle, the complexity of each 
ant selects the physical machine for the virtual machine is O(N), and the complexity of maintaining 
the set of candidate physical machines is O(M), so the complexity of generating a feasible solution is 
O (M(M+N)). Because the number of solutions in Pareto optimal set is uncertain, the complexity of 
maintaining the Pareto optimal set is not analyzed. The algorithm will generate the number of G*A 
feasible solutions at most, so the complexity of generating feasible solutions is O(GAM(M+N)).  

5 Experimental results 
To verify the effectiveness of the proposed algorithm MOACO (Multi-Objective Optimization Based 
on Ant Colony Optimization), it is compared with two single objective ant colony optimization 
algorithms which are SACO-OBD and SACO-IBD, FF(First Fit algorithm) and GS(Greedy 
Scheduling) under some instances. The paper use java programming language to implement all 
algorithms. Because of the inherent parallelism of ant colony algorithm, the parallel computing 
framework Fork/Join in Java7 is used to reduce the running time of the algorithm. 
(1) MOACO: The algorithm is a multi-objective ant colony optimization algorithm for OBD and IBD. 
(2) SACO-OBD: The algorithm is a single objective ant colony algorithm for objective OBD, which is 

used to measure the optimization of MOACO for objective OBD. 
(3) SACO-IBD: The algorithm is a single objective ant colony algorithm for objective IBD, which is 

used to measure the optimization of MOACO for objective IBD. 
(4) GS: For each virtual machine, the physical machine with the maximum matching distance as Eq. 

(11) defined is selected. 
(5) FF: For each virtual machine request, the physical machine for the first time to satisfy the resource 

constraints as Constraint (10) defined is selected. 

5.1 Experiment parameters 

In this paper, the virtual machine template and the physical machine template are set up in advance as 
shown in Table 1 and Table 2. The physical machines and virtual machines are generated randomly by 
the templates. The results of five algorithms are compared in the same scale. The parameters of ant 
colony algorithm are set by several experiments: 1α = , 5β = , 0.5ρ = , A M= , 50G = ,C=1. 
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Table 1. Virtual machine template 

CPU/core Memory/GB Storage/GB Bandwidth/Mbps 
1 1 100 100 
1 2 200 100 
2 2 200 100 
2 1 300 200 
1 2 100 100 
2 2 100 200 

Table 2. Physical machine template 

CPU/ 
core 

Memory
/GB 

Storage/
GB 

Bandwidth/
Mbps 

available 
CPU/core 

available 
Memory/GB 

available 
Storage/GB 

Available 
Bandwidth/Mbps 

8 16 750 750 5 10 500 550 
4 16 1000 1000 3 12 700 600 
8 8 1000 750 4 6 650 400 
4 8 750 1000 2 5 450 600 

5.2 Comparison of different algorithms 

Every test was repeated with 10 runs for each instance and the average result of MOACO is compared 
with other algorithms. Figure 3 shows the experimental results of two objectives in different scales.  

  

Figure 3. The results of different algorithms in different scales. 

Figure 3 indicates that SACO-OBD performs best on the objective OBD, but it performs poor 
compared with MOACO and SACO-IBD on the objective IBD. SACO-IBD performs best on the 
objective IBD, but it performs poor compared with MOACO and SACO-OBD on the objective OBD. 
The experimental results of GS are similar to single objective ant colony algorithms on the objective 
OBD and IBD respectively, and that indicates the heuristic information is helpful for load balancing. 
The experimental results of MOACO are obviously better than GS and FF on the objective OBD and 
IBD. The results show that the proposed algorithm MOACO can search and find solutions that exhibit 
good balance among objectives while others cannot. 

Conclusion 
For the problem, this paper analyzes the influence of two scenarios about resource utilization on load 
balancing. Two objectives are proposed to measure the load balancing comprehensively as possible. A 
multi-objective ant colony optimization algorithm for virtual machine placement in the general 
situation is proposed to balance load by optimizing the proposed two objectives. The proposed 
algorithm is compared with two single objective ant colony optimization algorithms, first fit algorithm 
and greedy algorithm under some instances. The experimental results show that the algorithm can 
effectively optimize multiple objectives to achieve the goal of load balancing in different scales. 
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