
A GPU Heterogeneous Cluster Scheduling Model for
Preventing Temperature Heat Island

Yun-Peng CAO1,2,a and Hai-Feng WANG1,2
1School of Information Science and Engineering, Linyi University, Linyi Shandong, China 276005
2Institute of Linyi University of Shandong Provincial Key Laboratory of Network based Intelligent Computing, Linyi
Shandong, China 276005�

Abstract. With the development of GPU general-purpose computing, GPU heterogeneous
cluster has become a widely used parallel data processing solution in modern data center.
Temperature management and controlling has become a new research hotspot in big data
continuous computing. Temperature heat island in cluster has important influence on
computing reliability and energy efficiency. In order to prevent the occurrence of GPU cluster
temperature heat island, a big data task scheduling model for preventing temperature heat
island was proposed. In this model, temperature, reliability and computing performance are
taken into account to reduce node performance difference and improve throughput per unit
time in cluster. Temperature heat islands caused by slow nodes are prevented by optimizing
scheduling. The experimental results show that the proposed scheme can control node
temperature and prevent the occurrence of temperature heat island under the premise of
guaranteeing computing performance and reliability.

1 Introduction
After GPU (Graphic Processing Unit) was proposed by NVIDIA company and its birth, it has been
developing rapidly beyond the speed of Moore's Law, its computing capability has been rising
continuously. At SIGGRAPH conference in 2003, GPGPU(General-purpose computing on graphics
processing units) was introduced. GPUs gradually shifted from dedicated parallel processors
consisting of fixed functional units to architectures with primary general-purpose computing resources
and secondary fixed functional units. GPU is composed of a large number of parallel processing units
and memory control units, its processing power and memory bandwidth has obvious advantages
compared with CPU. However, GPU cannot completely replace CPU, a lot of operating systems,
softwares and codes cannot run on GPU. GPU general-purpose computing usually uses CPU/GPU
heterogeneous mode, CPU executes complex logic and transactions and other tasks unsuitable for
parallel processing, GPU implements compute-intensive large-scale data parallel computing tasks.
With its high performance, low energy consumption and other advantages, CPU/GPU hybrid
architecture has been widely used in graphics and image processing, video encoding and decoding,
matrix computing and simulation, medical industry application, life science research,
high-performance computing, signal processing, database and data mining and many other fields.
With technology advances and breakthroughs, GPU is playing an important role currently in
�� �������������������� �
a Corresponding author: lyucyp@163.com

DOI: 10.1051/, 711070011ITM Web of Conferences itmconf/201

IST2017

07003 (2017) 3

 © The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative
Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

large-scale parallel computing. With the rapid increase of problem scales of various application fields,
single GPU’s computing capability has become insufficient, so multi-GPU and GPU cluster
general-purpose computing has become a new research hotspot. As an important approach of
high-performance computing, GPU clusters have such advantages as low cost, high performance and
low energy consumption for compute-intensive applications. In constructing GPU clusters, CPU and
GPU cooperate with each other, participate in data processing, and form GPU heterogeneous cluster.
GPU heterogeneous cluster can make full use of hardware resources, improve processing speed and
throughput. It has become an important means of big data processing.

Processing big data, especially real-time big data stream needs cluster’s continuous computing and
processing, and it will inevitably require computer’s high-load and continuous work, so the
temperature of CPU, GPU and other components will continue to rise. On one hand, computing
energy consumption increases, on the other hand, fans and air conditioners are needed for reducing
temperature, thereby increasing cooling energy consumption. When temperature rises to a certain
extent, the temperature of one or some nodes will be too high. The node with too high temperature is
known as temperature heat island. The occurrence of temperature heat island will reduce computing
reliability, ranging from result error to system’s paralysis and halt. Once errors occur in computing
results, recomputing is needed, resulting in time and resource waste, increasing processing costs. In
this case, we must reasonably design cluster task scheduling scheme to minimize cluster overall run
time, control temperature to appropriate range, prevent individual node from running so long that
leading to over high temperature and forming temperature heat island, to ensure reliable computing
results, reduce energy consumption as much as possible and achieve green computing.

This paper studied the task scheduling on GPU heterogeneous cluster, and proposed a task
scheduling scheme of preventing temperature heat island. The scheme’s main features and advantages
are:

(1) strong robustness. The structure of GPU heterogeneous cluster is complex, each node’s
configuration is different, and the node is often changed and adjusted. This task scheduling scheme
can sense and adapt to this complicated and changeable situation.

(2) high processing performance. A task is divided into some sub-tasks, and then they are
scheduled to multiple nodes for parallel processing. The main problem is determining the mode of
division and treatment. The concept of computing scale threshold and asymmetric partitioning method
are proposed in order to adapt to the diversity and heterogeneity of node configuration, improve the
parallelism and shorten the whole running time of cluster. This not only prevents temperature heat
island from occurring because of individual node’s overlong running time, but also improves
processing performance.

2�� Related researches
With the wide application of GPU heterogeneous cluster, its task scheduling, temperature and heat
management and energy consumption optimization has become a research hotspot. Many scholars
have put forward various scheduling schemes and methods to solve the problem of energy
consumption and reliability. This has played a positive role in reducing cluster energy consumption
and ensuring the reliability of computing results.

In [1] a dynamic task partition method was proposed. It divides parallel computing tasks according
to execution speed to achieve best overall system performance. In [2] a multi-GPU self-adaptive load
balancing method was proposed. GPU can self-adaptively select tasks to execute according to local
free-busy state by establishing task queue model between CPU and GPU. In [3] a load balancing
strategy that combines task partitioning and stealing was proposed. It takes into account task affinity
and processor diversity to direct task scheduling between CPU and GPU. In [4] feedback controlling
was combined with mixed integer programming, and the energy consumption controlling model of
Web server cluster was constructed. In [5] model predictive controlling strategy was introduced from
global perspective. The energy consumption state is changed by adjusting computing frequency and
changing active stream multiprocessor. The feedback controlling and rolling optimization mechanism

DOI: 10.1051/, 711070011ITM Web of Conferences itmconf/201

IST2017

07003 (2017) 3

2

are used to predict future controlling to reduce redundant energy consumption. In [6] the energy loss
at idle state is reduced by a specific node selection strategy. CPU resource utilization is improved by
task type division, combination distribution and DVFS.

The above researches mainly focus on cluster task scheduling, changing CPU/GPU core voltage,
frequency, hardware-based statistics, and so on to design cluster energy consumption model, study
task scheduling algorithm and achieve energy-saving purpose, but do not consider temperature much.
In GPU cluster computing, especially continuous computing, temperature has obvious relationship
with energy consumption and reliability. When temperature is too high, energy consumption increases,
reliability declines, and the probability of result error increases. Therefore, temperature should be
controlled in a reasonable range to minimize energy consumption under the premise of ensuring
reliability. The task scheduling scheme proposed in this paper distributes tasks reasonably among
computing nodes to prevent the occurrence of temperature heat island and ensure the correctness of
computing results.

3�� Task scheduling model
In GPU heterogeneous cluster, CPU and GPU all participate in data processing. They are regarded as
computing units uniformly when distributing tasks. The computers in cluster are ��������	
� ��
controlling nodes and computing nodes. The controlling node can be simultaneously used as a
computing node. All tasks form a queue. Each task is decomposed into several sub-tasks to form
sub-task queue. The controlling node runs the main scheduling process, Scheduler. Each computing
node has a scheduling agent process, Agent. Scheduler and Agent cooperate to finish task scheduling.
The architecture is shown in Figure 1.

Figure 1. Task scheduling architecture�

4� Task scheduling algorithm and strategy
Scheduler algorithm is as follows:

Algorithm 1 Controlling node Scheduler scheduling algorithm
1. Obtain a task from task queue
2. Obtain the hardware configuration and running status information of each computing node
3. Determine the number of computing nodes participating in parallel processing
4. Divide task into sub-task queue and assign sub-tasks to corresponding computing node
5. Wait for the results of each sub-task
6. Modify the status of corresponding sub-tasks and the associated tasks in queue.
7. Reschedule sub-tasks that timed out or requested to transfer, modify corresponding status
8. Go to 1
For each computing node, the sub-tasks that controlling node dispatches to it form a queue. The

scheduling algorithm of Agent on computing node is as follows:

Controlling node
Scheduler

Computing node
Agent

…

Sub-task queue

Task queue

Sub-task queue

Computing node
Agent

Sub-task queue

Computing node
Agent

Sub-task queue

DOI: 10.1051/, 711070011ITM Web of Conferences itmconf/201

IST2017

07003 (2017) 3

3

Algorithm 2 Computing node Agent scheduling algorithm
1. Obtain a sub-task from the sub-task queue of local node
2. Assign the sub-task to local node for processing
3. Wait for the result to be returned from local node
4. Report results to controlling node (completion, timeout, or requesting transfer)
5. Go to 1

4.1�� Acquiring hardware configuration information

Scheduler first obtains the hardware configuration information of each node in cluster. The
information can be manually created in advance and saved in file. When cluster is started, Scheduler
loads cluster hardware configuration information file. It polls each computing node, Agent responds to
the poll and reports hardware change information to Scheduler. Or, Agent reports hardware change
information to Scheduler actively. Then Scheduler modifies cluster's hardware configuration
information. In this way, controlling node can grasp the latest changes in cluster hardware
configuration, avoiding unnecessary acquisition and reporting of hardware configuration information,
thus adapting to actual hardware configuration changes and reducing network communication
overhead.

4.2� Scheduling strategy

Computing scale is used to measure task size. Computing scale is the number of instructions to be
executed or the amount of data to be processed to complete the task. A task contains parallelizable and
non-parallelizable part. Suppose the computing scale of a task is T, T�Ts+Tp, Ts is the computing
scale of non-parallelizable part, and Tp is the computing scale of parallelizable part. Let Tt be the
critical value of the computing scale of parallelizable part, then task scheduling strategy is as follows:

(1) 0≤Tp<Tt, the task does not have parallelizable part or has relatively smaller parallelizable part,
it cannot or has no need to be divided into small sub-tasks, the computing unit with strongest
computing capability is selected directly from idle computing units to process the task.

(2) Tp≥Tt, the task has parallelizable part and it reaches a certain scale. The parallelizable part of
task is divided into smaller sub-tasks, many computing units with strongest computing capability are
selected from idle processing units to process them.

4.2.1� Determining Tt and the number of computing units

The processing capability is assumed to be Cs when task is processed separately by a single computing
unit. Without loss of generality, assuming that when parallel processing, the number of computing
units participating in processing is n, their processing capability is all Cp. In order to obtain better
performance, then:

t t

s p

T T Q
C nC

≥ + (1)

Where Q is the additional time overhead required for parallel processing, including parallel
computing preparation, result merging, synchronization, network transmission, and so on. At the same
time in order to ensure high processing efficiency, then:

t

p

T Q
nC

≥ (2)

Solving the inequality group consisting of above two inequalities will get:

DOI: 10.1051/, 711070011ITM Web of Conferences itmconf/201

IST2017

07003 (2017) 3

4

max{ , }p s
t p

p s

nC C Q
T nC Q

nC C
≥

−
 (3)

The value of Q can be determined experimentally or by accumulating historical empirical data. Cp
can be taken as the average of the current computing capability of all computing units, and Cs is the
average of the current computing capability of all CPUs in cluster. Let

max{ , }p s
m p

p s

mC C Q
T mC Q

mC C
=

−
, m=1,2,…,Nidle, Nidle is the number of all idle computing units in

current cluster. In order to increase the parallelization degree of task processing, change from Nidle in
descending manner until the first number k which lets Tp≥Tk is found, then k is the number of units
involved in parallel processing, the algorithm to determine it is as follows:

Algorithm 3 Determining the number of parallel processing units
1.� get Nidle
2.� i←Nidle k←1
3.� if i≤1 goto 7

4.� Ti← max{ , }p s
p

p s

iC C Q
iC Q

iC C−

5.� if Tp≥Ti then k←i goto 7
6.� i←i-1 goto 3
7.� end
If k<2 or qualified k value cannot be found, the task is handled by one CPU and not scheduled in

parallel manner.

4.2.2� Partitioning parallel part

Assuming that the current computing capability of k computing units involved in parallel computing is
C1,C2,….,Ck, the scale of sub-tasks assigned to each processing unit is T1,T2,…,Tk, then the time to
complete the task is:

1 2

1 2
max{ , ,..., }k

k

TT T
C C Ct = (4)

Where T1+T2+…+Tk=Tp. It can be proven that when i pC T
i CT = (i=1,2,…,k), t is minimum and

pT
Ct = ,where C=C1+C2+…+Ck. Therefore, the proportion of allocated task to total task scale being

equal to the ratio of the current computing capability of the computing unit to the sum of the current
computing capabilities of all computing units participating in parallel processing, can effectively
reduce overall processing time, balance load, and avoid the case that some units are idle and some
units run for long time and cause temperature heat islands to occur.

4.3�� Estimating current computing capability

Current computing capability is related to its own hardware configuration and hardware's current state
of utilization. For computing units with same configuration, the busier ones have stronger current
computing capability than the idle ones. By referencing [7] and improving, the current computing
capability is estimated. For any computing node Ni, consider its five hardware configuration
parameters: CPU frequency rate_cpui, memory size memi, cache size cachei, GPU frequency
rate_gpui, GPU memory size mem_gpui and five state parameters: CPU utilization utlz_cpui, memory

DOI: 10.1051/, 711070011ITM Web of Conferences itmconf/201

IST2017

07003 (2017) 3

5

utilization utlz_memi, cache utilization utlz_cachei, GPU utilization utlz_gpui, GPU memory
utilization utlz_gpumemi. The current computing capability of node Ni is:

1 1 2 2 3 3 4 4 5 5iC k Q k Q k Q k Q k Q= + + + + (5)

k1, k2, k3, k4 and k5 represents the level proportion weight of influence on node current computing
capability of CPU, memory, Cache, GPU and GPU memory respectively. Their sum is 1. Q1-Q5
respectively denotes CPU current capability, memory current capability, cache current capability,
GPU current capability and GPU memory current capability after normalization of node Ni. Q1 is
calculated as:

1

1

_ (1 _)
(_ (1 _))

i i
N

j jj

rate cpu utlz cpuQ
rate cpu utlz cpu

=

× −
=

× −∑
 (6)

The formulas for Q2-Q5 are similar. For a certain node, Ci, Q1, Q2, Q3, Q4 and Q5 can be
determined experimentally, and then the approximate value of k1, k2, k3, k4 and k5 can be determined
by regression method.

5 Experiment and analysis
The scheme proposed in this paper was verified experimentally. Two experiments were conducted on
same cluster. The experiment program is: Some relative softwares (such as CPU-Z, HWMonitor,
CoreTemp, etc.) were used to measure temperatures of CPU and GPU of each computing unit at
different time during cluster’s running, and the temperature curve of each computing unit was drawn
according to them.

Seven computers were used to constitute GPU heterogeneous cluster. Five of them have the
configuration: model is Lenovo Erazer X700, memory is 16G, CPU is Intel i7-3930k, GPU is
NVIDIA GTX660i, operating system is Ubuntu12.04 LTS, cluster environment is hadoop2.2.0, Java
version is JDK1.7. The other two have lower configuration: CPU is Intel Pentium (R) Dual-Core
E5300 2.60GHz, memory is 4G, GPU is NVIDIA GeForce 9400GT, operating system is Windows 7
64-bit Ultimate. The experimental data is taxi GPS data and data generated continuously by
loadrunner.

5.1 Conventional scheduling method

Firstly, conventional scheduling method was used. Only task balanced scheduling was considered,
regardless of temperature changes. Every 1 minute temperature was sampled once. The result is
shown in Figure 2, where C1, C2, ..., C7 is each computing node.

0 1 2 3 4 5 6 7 8 9 10 11
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

Te
m

pr
at

ur
e(

o C
)

Sampling Interval

 C1

 C2

 C3

 C4

 C5

 C6

 C7

Figure 2. Temperature change in conventional scheduling method

DOI: 10.1051/, 711070011ITM Web of Conferences itmconf/201

IST2017

07003 (2017) 3

6

The cluster processes taxi GPS data firstly. The data amount is larger, but because it is historical
data, it does not take long time to process it. Temperature and power are measured with measuring
instruments, temperatures of CPU, GPU and so on are monitored with softwares. It is found that the
temperature and power of CPU and GPU are increasing during processing, but the task has been
finished before temperature rises to the set threshold, and the problem of temperature heat island and
reliability does not occur. Then simulation data that loadrunner software continues to generate is
processed. At this time, CPU and GPU temperature continues to rise, energy consumption continues
to increase. After a certain time, temperature exceeds the threshold and temperature heat island is
formed, computing result error occurs. The difference between the lowest and highest temperatures of
various computing nodes is about 12 °C.

5.2 Scheduling scheme proposed in this paper

In the second experiment, the same experimental environment and data were used, but the scheduling
scheme preventing temperature heat island proposed in this paper was used. During processing task,
temperature is collected. The result is shown in Figure 3.

0 1 2 3 4 5 6 7 8 9 10 11
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

Te
m

pr
at

ur
e(

o C
)

Sampling Interval

 C1

 C2

 C3

 C4

 C5

 C6

 C7

Figure 3. Temperature change in scheduling method preventing temperature heat island

The result of processing taxi GPS data is similar to the previous, but the result shows that the
difference of temperature and energy consumption of each node tends to decrease. This shows that
this scheme is more time-balanced in task scheduling to prevent temperature heat island from
occurring and guarantee overall stability. Data streams generated continuously by program are
processed by cluster. It was found that, although the temperature of CPU and GPU increased, the
temperature and power did not increase continuously when temperature rised nearly to threshold value,
and no temperature heat island and computing error occurred. When data supply amount was
increased, the phenomenon that temperature and power increase did not occur. This shows that the
scheduling scheme trys to balance running time, inhibit the increasing of temperature and energy
consumption to prevent temperature heat island from occurring. The difference between the lowest
and highest temperatures among various computing nodes is about 9 °C.

Analyzing above experimental results, it is shown that, if conventional method is adopted, the
temperature of each computing node increases continuously with the processing of task, the
temperature of some nodes exceeds threshold, and the temperature fluctuates greatly. However, when
the scheduling method proposed in this paper is used, temperature is also rising, but because task
division makes node running time be consistent as far as possible, the range of temperature fluctuation
is small, the overall temperature change is relatively calm, thus it is avoided that the temperature heat
island occurs.

DOI: 10.1051/, 711070011ITM Web of Conferences itmconf/201

IST2017

07003 (2017) 3

7

Conclusion
The GPU heterogeneous cluster task scheduling scheme proposed in this paper avoids long running
time of individual nodes as far as possible, prevents temperature heat island from occurring,
guarantees computing reliability, controls energy consumption in a certain range, and also considers
the constraints among temperature, reliability, performance and energy consumption, minimizes
energy consumption or improves processing speed as far as possible under the premise of ensuring
reliability. The main work of next step is to study how GPU heterogeneous cluster perceives and
predicts cluster temperature and its variation, and apply it to cluster task scheduling.

Acknowledgments
This research project is supported by the joint special project of Shandong Provincial Natural Science
Foundation (Project No.: ZR2015FL014) and the special project of Shandong Provincial Independent
Innovation and Achievement Transformation (Project No.: 2014ZZCX02702).

References
1. C. Q. Yang, F. Wang, Y. F. Du, et al. Adaptive optimization for petascale heterogeneous

CPU/GPU computing. The 2010 IEEE Int'l Conf. on Cluster Computing. (2010)
2. L. Chen, O. Villa, S. Krishnamoorthy, G. R. Gao. Dynamic load balancing on single- and

multi-GPU systems. The 2010 IEEE Int'l Symp. on Parallel & Distributed Processing (IPDPS).
(2010)

3. E. Hermann, B. Raffin, F. Faure, T. Gautier, J. Allard. Multi-GPU and multi-CPU parallelization
for interactive physics simulations. The 16th Int'l Euro-Par Conf. on Parallel Processing: Part II
(Euro-Par 2010). Berlin, Heidelberg: Springer-Verlag. (2010)

4. L. Bertini, C. B. Julius, D. Mosse. Power optimization for dynamic configuration in
heterogeneous web server clusters. Journal of Systems and Software, 83(4): 585-598. (2010)

5. H. F. Wang, Y. P. Cao. GPU Power Consumption Optimization Control Model of GPU Clusters.
Acta Electronica Sinica, 43(10): 1904-1910. (2015)

6. H. P. Huo, X. M. Hu, C. C. Sheng, B. F. Wu. An energy efficient task scheduling scheme for
node-layer heterogeneous GPU clusters. Computer Applications and Software, 30(3): 283-286.
(2013)

7. H. Liu, J. G. Wang, Z. Z. Ge, et al. Self-learning Load Balancing Scheduling Algorithm for GPU
Heterogeneous Cluster. Journal of Xi'an Shiyou University, 30(3): 105-111. (2015)

DOI: 10.1051/, 711070011ITM Web of Conferences itmconf/201

IST2017

07003 (2017) 3

8

