
�

SemDiff: Finding Semtic Differences in Binary Programs based on Angr

Shi-Chao WANG1,*, Chu-Lei LIU2,a, Yao LI3,b, and Wei-Yang XU4,c�
1National University of Defense Technology, China
2Haerbin Engineering University, China
3National University of Defense Technology, China
4National University of Defense Technology, China
a634390770@qq.com, bFaith_ly@yeah.net, c286406726@qq.com
*Corresponding author: wshchao@163.com

Abstract: We introduce SemDiff, a novel technology for finding semantic differences between two binary files. Now,
the vendor will release the information to patch the previous version which has vulnerability. Then, we can compare
the differences and similarities between the two versions to get the unpublished details of the 1day vulnerabilities.
Tools, such as BinDiff, BinHunt and iBinHunt ,have worked on this project before, however , there are some
weaknesses on them. Just like BinDiff, a comparison method based on structure, can not be effective for judging the
semantic differences. Though the other two tools(BindHunt and iBinHunt) can recognize the differences we focus on,
they can not effectively verify the functional inlining and spend a pretty long time to finish the process because the
use of graph-based isomorphism algorithm. In the paper, we first propose SemDiff, which uses the existing tool(angr)
to generate the intermediate language(VEX). Then, because of the nature of program, the data read from and written
to the memories, we record these information to implement the comparison. Last, an improved BinDiff algorithm is
used to match the basic blocks. In this paper, we take some real vulnerabilities as examples, such as
CVE-2010-3974-Microsoft Windows to test our tool, reaching a good goal, matching more blocks than BinDiff and
taking less time than BinHunt and iBinHunt.

1 Introduction
Now, for the purpose to protect the source code, many
software vendors make the source code of their programs
unavailable and when the vulnerabilities occurs, the patch
is released in binary mode, rather than the source code.
As Microsoft and other companies, when they publish a
patch, no details are showed [1]. This situation increases
the difficulty in analyzing the potential vulnerabilities to
protect us from those threats, which may hijack our data,
steal our privacy and so on. So, it is significant for us to
understand the differences between the two versions. And,
finding out the 1day vulnerabilities is one of the roles of
the SemDiff.

However, because of instruction obfuscation,
mutation optimization technology and other practical
problems, the binary comparison is difficult. Modifying
the software process call graph, using the Proxy point,
changing the function symbols, sharing basic blocks,
adding entry points, re-allocating registers, instruction
sequence replacement, all increase the difficulties.

In addition, there are may prior works for solving
these problems. Almost four types of methods have been
developed for automatically comparing the structural
similarities of executables, the class of BinDiff[2-4],
Fingerprint and String Hashing[1,11,12], Bipartite Graph
matching such as GED[1,13] and other graph

methods[6,7]. The detailed introduction is showed as
follows.

In this paper, we propose a new method called
SemDiff to find the semantic differences between the two
programs. Our method, compared with previous methods,
such as BinDiff and BinHunt, provides a kind of rapid
and accurate matching. For BinDiff, it only relies on
structural information, which leads to many unmatched
functions that should be matched. Our method is based on
the control flow on basic blocks, symbolic execution[8]
and the theorem prover. We first construct the
intermediate representation of the program(we used the
VEX there), then generate the control flow graph of the
basic blocks. After that, we record the data written to and
read from memories and registers, and then we put them
into theorem prover to judge the similarity. Last, we use
these information and the SemDiff to match the blocks.

Our approach is an interprocedural analysis rather
than an intraprocedural analysis. Intraprocedural analysis
limit to the scope of the current function, however,
interprocedural analysis has the ability to enter
sub-functions [9]. Needless to say, in-process analysis is
much simpler than the process. However , sometimes we
want to follow the path to find what we want, they may
occur in different functions.

Our aritcles is organized as follows: Section 2
introduces the whole framework and an overview of each

DOI: 10.1051/, 03029 (2017) 712012

ITA 2017

ITM Web of Conferences itmconf/201 3029

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution
 License 4.0 (http://creativecommons.org/licenses/by/4.0/).

�

part of the SemDiff, the next Section 3 shows the
SemDiff algorithm which is improved from BinDiff, then
we present the experiment and the analysis of them in
Section 4. The limitation and future work are summarized
in Section 5.

2 System Architecture
Fig.1 shows the whole system architecture. Firstly, the

two binary files are loaded into angr platform, and angr
runs its own disassembler, converting the execution files
to assembly code. Then, they become the intermediate
representation blocks through the IR convertor, which is
then loaded into the CFG constructor to generate
intermediate language representations control flow graph.
After that, using the symbol execution to record the data
which are judging by theorem proving. Last put the data
into the SemDiff to get the matched set.

Figure 1. System architecture of the SemDiff

2.1 Angr

The writer of angr wants to create a user-friendly binary
analysis suite, allowing a user to simply start up iPython
and easily perform intensive binary analyses with a
couple of commands. That being said, binary analysis is
complex, which makes angr complex. The more details
can be seen in [10].

2.2 Intermediate Representation

In VEX, the code is broken down into smaller blocks
which is called IRSBs. IRSB is a single entry and
multiple exit, which contains three elements:1.a type
environment; 2.a list of statement; 3.a jump that exits
form the end of the IRSB.

2.3 Symbolic Execution and Theorem Proving

Symbolic execution is a well known technique for
representing scalar program analysis with symbolized
values. We can perform symbolic execution to get the
results of each step, and record the contents which are
written to each memory and register. Because the core of
executing the program is the data which are read from or
written to the memory and register. So we use them to
represent the semantic performance of a basic block. To
determine the two basic blocks are functionally identical,
we define a rule as follows:

definition1��pair basic blocks equivalence formulas
of data�Given two list of data that are recorded in the
memories and registers: X = [�� ,���� � ��],and Y =
[��� ���� � ��]. For every �� in X, there is a bijection,
that, �� = f(��) is existed ,then ,we call the data is same.
The formula is described as follows:

��� ���� � � �� � � � ��������������

3 SemDiff Algorithm
Now, we propose our SemDiff as three
parts(WholeMatch, MatchPro, SemDiff).As with the
previous algorithms, at the beginning of the initially
matching process, we find the blocks which are uniquely
matched, what is said that, we find some basic blocks that
have the same symbol expressions in each addresses.
Because there may some different blocks with the same
data. This is also well explained in practice. In different
functions, there are some similar blocks, for different
functions may call the same part of the function.

Figure 2. Algorithm 1

�

DOI: 10.1051/, 03029 (2017) 712012

ITA 2017

ITM Web of Conferences itmconf/201 3029

2

�

Figure 3. Algorithm 2

For the first part of the algorithm(Fig.2), �� and ��
are the basic block sequences of the two programs partly.
At the beginning, we assign the empty set to the Match
set, because we do not perform the matching process.
Then, the third line, we check if each �� in Sa has the
only match �� in Sb, and whether �� is the only match
to ��. If there is a bijection existing, add the pair ��� � ���
into the match set and delete the elements �� � �� from the
��� �� respectively.

Then, it is the second part (Fig.3). We call it the
match propagation, because it is applied in the
propagation progress. The input of the second part is the
match set which is got from the first step and the
remaining unmatched basic block sequence ���� ��� .
Then we match each block from a small set, which is the
line 4 and line 5 shown. ����� is the set of the parent
nodes and children nodes to the matched block ��, also
����� is the set of block ��. After we get the subset, we
use them into the wholeMatch to get the matched blocks.
The reason why we use this way is the remaining blocks
after the step one are the blocks with the different data or
more than two blocks have the same symbol expressions.
Then, we reduce the scope of the block lists to find more
matching blocks through the context of the matched
blocks.

Figure 4. Algorithm 3

The last part is a loop (Fig.4), which is the whole
process of our SemDiff algorithm. The main core of the
SemDiff is the line 8 and line 9. After the line 8, we may
get two remaining lists which may have the unique blocks
with the same symbol expressions but they are not the
parent node or the child node of the matched blocks. If
we do not execute the line 9, we may miss some of them.

4 Experiment
Our experiment is carried out in the system Ubuntu 14.04,
running in an angr virtual environment. The language
which we use is Python. We first run a sample program.
The sample’s input is the same two paths. Our purpose is
to illustrate our SemDiff’s efficiency. Then we run two
real program with vulnerability. The inputs are the paths
of unpatched and patched program respectively.

4.1 The sample

We test a simple sample named fauxware, and finally find
all the blocks matched with score 1 experienced 4 times
during 45.301483 Seconds.

4.2 CVE-2010-3974

We first run the unpatch version and patch version, and
change them into IR blocks, like Fig.5.

Figure 5. Assembly instruction and IR instruction

�

DOI: 10.1051/, 03029 (2017) 712012

ITA 2017

ITM Web of Conferences itmconf/201 3029

3

�

Then, we preprocess the data by ignoring the address
of memory and register like Fig.6.

Figure 6. Final Data

We then run the basic block comparison. We finally
find some matched blocks with score between 0.8 and 0.9.
We then check the content. According to the knowledge,
we find the vulnerability point existing in these blocks.
One of the blocks in patched version is illustrated as
Fig.7.

Figure 7. Blocks with score 0.8-0.9

We then trace these blocks path and finally find out
the vulnerability in the unpatch version.�

Summary

In this paper, we introduce a novel technique named
SemDiff. It is based on the angr platform. The main
technique we use is the symbol execution, Theorem
Proving and the updated the comparison algorithm.
Though SemDiff has worked well on some files, it
depends on the angr platform seriously. So sometimes it
can not well support the PE file. And the way to find the
vulnerability is still manual operations. We will develop
our tools to find the vulnerability automatically in the
future.

Acknowledgement
We would like to thank Thomas Dullien for his
fascinating seminar on BinDiffthat inspired this study.

References
1. Martial Bourquin, Andy King, Edward

Robbins,BinSlayer :Accurate Comparison of Binary
Executables(2013).

2. T. Dullien and R. Rolles. Graph-based comparison of
executable objects. In Symposium sur la Se ́curite ́
des Technologies de l’Information et des
Communications (2005).

3. Halvar Flake. More fun with graphs. Black Hat
Federal (2003).

4. Halvar Flake. Structural comparison of executable
objects. In Proceedings of the IEEE Conference on
Detection of Intrusions and Mal- ware &
Vulnerability Assessment - DIMVA, 2004,pp
161–173.

5. S. Bardin, P. Herrmann, and F. Ve ́drine.
Refinement-Based CFG Reconstruction from
Unstructured Programs. In VMCAI, volume 6538 of
LNCS, 2011, pp 54–69.

6. D. Gao, M.K. Reiter, and D. Song. Binhunt:
Automatically finding semantic differences in binary
programs. In Poceedings of the 10th International
Conference on Information and Communications
Security (ICICS 2008), 2008.

7. Jiang Ming, Meng Pan, and Debin Gao ,iBinHunt:
Binary Hunting with Inter-Procedural Control
Flow,Springer Berlin
Heidelberg, 2013, 7839:92-109.

8. King, J.: Symbolic execution and program testing.
Communications of the ACM 19(7) (1976).

9. Josselin Feist, Laurent Mounier and Marie-Laure
Potet,Statically detecting use after free on binary
code, Journal of Computer Virology and Hacking
Techniques (2014).

10. S Yan�C Kruegel�G Vigna�R Wang(State of)
The Art of War: Offensive Techniques in Binary
Analysis, IEEE Symposium on Security and
Privacy,(2016).

11. J. Oh. Fight against 1-day exploits: Diffing Binaries
vs Antidiffing Binaries. In Black Hat USA, 2009.
http:
//www.blackhat.com/presentations/bh-usa-09/OH/
BHUSA09-Oh-DiffingBinaries-PAPER.pdf.

12. J. Oh. ExploitSpotting: Locating Vulnerabilities Out
Of Vendor Patches Automatically. In Black Hat USA,
2010. http://www. darungrim.org/Presentations.

13. K. Riesen, M. Neuhaus, and H. Bunke. Bipartite
graph matching for computing the edit distance of
graphs. In Graph-Based Representa- tions in Pattern
Recognition, volume 4538 of Lecture Notes in
Computer Science, pp 1–12. Springer, 2007.

�

DOI: 10.1051/, 03029 (2017) 712012

ITA 2017

ITM Web of Conferences itmconf/201 3029

4

