
�������	
���
	�������	����	���������	������	��	������	��
���
	

��������	
����
�
��������������
��������������������������������
���������	�
���
���
	��������
�����������
��	�������������������
��������������
���������������������������� �����
!"��#�
���	����� ���������$��	���������������������������%���� �����
�� ������&����
� ��������������'���
�(�)�� ��(��	���������������**��� ����
����(+�,- ���$�����������	������������$������./���0��0����	����������!���/�1�0���

Abstract—To persistently eavesdrop on the mobile devices, attackers may obtain the elevated privilege and inject
malicious modules into the user devices. Unfortunately, the attackers may not be able to obtain the privilege for a long
period of time since the exploitable vulnerabilities may be fixed or the malware may be removed. In this paper, we propose
a new data hijacking attack for the mobile apps. By employing the proposed method, the attackers are only required to
obtain the root privilege of the user devices once, and they can persistently eavesdrop without any change to the original
device. Specifically, we design a new approach to construct a shadow system by hijacking user data files. In the shadow
system, attackers possess the identical abilities to the victims. For instance, if a victim has logged into the email app, the
attacker can also access the email server in the shadow system without authentication in a long period of time. Without re-
authentication of the app, it is difficult for victims to notice the intrusion since the whole eavesdropping is performed on
other devices (rather than the user devices). In our experiments, we evaluate the effectiveness of the proposed attack and
the result demonstrates that even the Android apps released by the top developers cannot resist this attack. Finally, we
discuss some approaches to defend the proposed attack.

I.	 ������������		
Nowadays, the mobile device is extremely popular and has
become a primary choice to store and handle the privacy data,
e.g., SMS messages, contact information, etc. Unfortunately,
the mobile devices also attract more attacks and the safety of
these privacy data has received lots of concerns [11, 8, 13, 12,
14]. To steal the user privacy persistently, one of the
common methods for the attackers is to obtain the elevated
privilege of the user devices and inject the eavesdropping
modules. During this process, the users are usually lured to
install the malwares from the attackers, while some users
become confused and grant the elevated privilege to the
attackers. In addition, attackers can directly obtain the
elevated privilege by exploiting the system vulnerabilities.
Some spies can even access the devices of victims physically
and then inject the eavesdropping modules. However, there
are some limitations for the attackers. For example, they may
only obtain the privilege temporarily because the malware is
found and deleted by the user. Besides, by injecting the
malicious modules into the user devices, it is easy for the
attackers to expose themselves.

In this paper, we propose a new data hijacking attack for
Android apps. By only obtaining the elevated privilege of
the user device once, a long-time eavesdropping can be
achieved by the attackers. The proposed attack is based on
three facts. Firstly, mobile apps usually authenticate the
users with passwords at the first time for convenience. The
session keys are usually stored in data files for the future
authentication. Secondly, data files of the mobile apps are
jointly managed by the OS and can be located easily.
Thirdly, for an account, multiple connections are usually
allowed by the app servers at the same time, and these
different connections cannot be distinguished whether they
are from the same device. Thus, once the attackers obtain
the elevated privilege, they can hijack the data files of users
to construct a similar execution environment, named
shadow system in this paper. If the users have logged into
their apps at the attack moment, attackers will also be able
to access the app server in the shadow system without
authentication. As a result, the attack is still effective in the
shadow system even if the elevated privilege of the user
device expires. Besides, without re-authentication, it is
difficult for the users to find the malicious behavior since
the whole eavesdropping process is implemented on the

DOI: 10.1051/, 04011 (2017) 712012

ITA 2017

ITM Web of Conferences itmconf/201 4011

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution
 License 4.0 (http://creativecommons.org/licenses/by/4.0/).

device of the attackers rather than the users. To evaluate the
effectiveness of the proposed attack, we design a generic
construction of the shadow system for Android apps and
conduct the attack with 7 most popular real-world apps
released by the top developers. The results show that the
proposed attack can be conducted successfully even on
Gmail, which are popular and downloaded more than one
billion times.

In summary, our contributions of this paper are as
follows.

•� We propose a new data hijacking attack for mobile
apps. By constructing the shadow system, we only need to
obtain the elevated privilege once and can persistently steal
the user privacies without any change to the user devices.

•� We evaluate the effectiveness of the proposed
attack by constructing a shadow system. The experimental
results on the most popular Android apps indicate that most
of the apps cannot resist the proposed attack.

•� After the demonstrations of the proposed attack,
we give some possible solutions to mitigate the data
hijacking attack.

The rest of the paper is organized as follows. Section 2
introduces our motivation of this paper. The detailed data
hijacking attack is described in Section 3. Section 4 presents
the evaluation of the proposed attack on the popular
Android apps. Solutions to resist the attack are discussed in
Section 5. Finally, we conclude this paper.

�	 ����������	
Since the security issues about the mobile devices are
exposed frequently, we should be aware that mobile systems
are not secure, especially for the Android system. According
to a recent study [22], 73 Android vulnerabilities are
collected and all of them can be exploited by the attackers to
obtain the root privilege of the user devices. Some other
researches such as [23] also reveal the severity of this
problem that these vulnerabilities are exploited to achieve
different activities by many malwares. Besides, even the
regular app developers [1, 2, 3] exploit these vulnerabilities
to help users to achieve a complete control of their devices.
Once the attackers obtain the elevated privilege, numerous
serious problems can be caused.

Since the system vulnerabilities may be fixed and the
malware may be deleted, the elevated privilege may be
obtained temporarily by the attackers. Besides, some spies
can access the devices of victims physically, and do not
intend to perform any change to the devices such that they
can avoid being exposed. Thus, the user privacies on mobile
devices can be stolen in a short period of time, but they are
difficult to be eavesdropped persistently.

In this paper, a new data hijacking attack is proposed,
and a shadow system is designed to steal the user privacies
persistently and quietly. Via the attack practice, we hope to
remind the app developers to design proper security
mechanisms for protecting the users’ data in an insecure
execution environment, and also warn the users of the

Spy

User Device
� adb

� hijack app data
(once)

Shadow Device

Malware

� install

� monitor
 (persistently)

mail
privacy

...

mail servers
social network

Eavesdropper

…

Figure 1. � The process of the data hijacking attack.

severe risks which can be caused by the abuse of elevated
privilege.

 	 !��	���"�
��	����	���������	������	

 #$	������	�����

	

As shown in Figure 1, the proposed data hijacking attack
mainly consists of three steps.

Firstly, the attackers need to obtain the elevated
privilege in the user devices. We assume that the privilege is
obtained when the malwares are installed in the user devices
or the devices are temporarily controlled by a spy. These
approaches [22, 1, 2, 3, 4] can be employed to obtain the
elevated privilege in the user devices.

Then, the attackers hijack the app data files in the user
devices to construct the shadow system. In this phase,
according to the information of the user device, a similar
system (shadow system) is built and the same apps are
installed by attackers. Besides, the app data files in the
shadow system are replaced by the corresponding hijacked
files.

Finally, in the shadow system, the attackers will have the
same abilities as the victims at the attack moment. For
example, if the users have logged in an app, the attackers
can also access the app servers to view the user privacy such
as email without authentication.

 #�	�""	����	�������	��	�������	

In order to implement the data hijacking attack, we firstly
analyze the data storage of the app in the mobile system.
Take Android as an example, the three critical locations for
storing app data files or account data are as follows.

Private App Data. It is well-known that Android is
constructed based on the Linux kernel. To isolate the apps,
Android system creates different system users for the

DOI: 10.1051/, 04011 (2017) 712012

ITA 2017

ITM Web of Conferences itmconf/201 4011

2

TABLE I. � The evaluation results on popular Android apps.

ID Package Name Category
Attack Requirements & Existing Defenses

Duration of Attack
Unique ID System Protocol

1 com.tencent.mobileqq Comm - - Single User
Login Fail in the first week

2 com.baidu.netdisk Cloud - - - Persistent

3 com.sina.weibolite Social - - - Persistent

4 com.netease.mail Mail - - - Persistent

5 com.google.android.gm Mail - Sync - Persistent

6 com.facebook.katana Social - - SMS verification Incomplete verification

7 com.microsoft.skydrive Cloud - Sync Fail in the first week

installed apps with unique UID. For each app, there is a
private directory in the system directory /data/data/ to store
its private data files, which cannot be accessed by other
unprivileged apps.

External Storage. Besides the private directory, the app
data can be also stored in the external storage such as
SDCard by an Android app. Files in the external storage can
be accessed by all apps who have the permission READ_
EXTERNAL_STORAGE. It is obvious that the critical data
cannot be stored in external storages by the developers. In
our experiment, this part of app data is not concerned.

Sync Adapter. The Sync Adapter [5] is a service
provided by the Android system to transfer the data between
the client and the server. Apps can store their account or
session information based on this service. Thus, app data
such as user contacts can be regularly synchronized with the
cloud servers. The account information is stored in the
system file /data/system/users/0/accounts.db, which is a
database file with SQLite format.

 # 	��%%��������	����	�����
�
	

Although it is effective to directly hijack all the app data files
into the shadow system, we introduce two differential data
analyses to reduce the size of required files.

Firstly, when an app is installed in the different
execution environments, many files such as the codes and
resource files are identical. Assuming that the app P is
installed in the device D, its data files are denoted as F = {f1,
f2, ...}. Instead of hijacking all the files in F to the shadow
system D’, we install app P in D’ and execute it to generate
the files F’ = {f’1, f’2, ...}. By computing the file signatures,
only the different files (F−F� F’) are required to be
hijacked. Thus, the size of the hijacked files can be reduced
significantly.

Aiming at specific apps, the files related to the user
account information can be located more accurately. Before
attacking an app P, a legal account is registered in advance.
And the files generated by the app before and after the user

logging into the account are denoted as F1 and F2,
respectively. Thus, the changed files (F2 −F1) are related to
the user account. However, although fewer files need to be
hijacked by this approach, the apps may not be normally
executed due to the lack of some critical files.

&	 '���������	

&#$	 '����������	����"	

We simulate the proposed attack with a real Android device
and the corresponding shadow system is constructed by the
Android emulator. The real device we used is Samsung
Galaxy S6 with Android OS 5.1.1. Firstly, Android apps are
installed in both the real device and the shadow system. Then,
the account is registered and logged into the app in the real
device. Finally, the different data files in the real device are
copied to replace that in the shadow system.

Some aspects need to be noticed. When the data files are
hijacked from the real devices to the shadow system, their
permissions must be reset to ensure that the apps in the
shadow system can be successfully executed. In our
experiment, this process is automatically completed by a
script program. Besides, since some account information of
apps is stored into the SQLite database file (accounts.db)
which may not be compatible for different systems, we
write a JDBC program to transfer the data.

&#�	'("���������)�
���
	

As shown in Table I, 7 most popular Android apps released
by the top developers are exploited to evaluate the
effectiveness of the proposed hijacking attack. Our
evaluation addresses the following two research questions:

•� RQ1 Can the apps discover the data hijacking
attack and stop their services to the attackers?

•� RQ2 How long does the attack last if the app is
attacked?

DOI: 10.1051/, 04011 (2017) 712012

ITA 2017

ITM Web of Conferences itmconf/201 4011

3

The results indicate that all the evaluated apps can be
attacked. This experiment indicates that the user privacies
can be accessed by the attackers in the shadow system
without authentication. The QQ (com.tencent.mobileqq) is
the most popular instant messaging app in China. Once the
app is attacked, chat records can be accessed by the
attackers. Thankfully, the app does not allow multiple users
login to the app at the same time. If the attacker login the
same account when the user is online, the attacker will be
exposed. The Gmail (com.google.android.gm) and
Microsoft OneDrive (com.microsoft.skydrive) manage their
account connections by the Sync Adapter mechanism. To
perform attack on these two apps successfully, the data in
the system database file /data/system/users/0/accounts.db
needs to be hijacked. The left apps, such as
com.sina.weibolite and com.netease.mail, can be simply
attacked just by hijacking their app files. We persistently
trace the user information for a month and only three apps
re-authenticate their users. The QQ and Microsoft OneDrive
correctly perform authentication and the attack fails in the
first week, while the process of Facebook
(com.facebook.katana) is incomplete. The Facebook server
re-authenticates its user by sending the SMS verification
code. If the code is not verified, both the user and the
attacker cannot login to the app. However, once the user
inputs the code, the attackers can also connect the app server
in the shadow system again without authentication.

&# 	*�
�	�����	

Gmail is an email app developed by Google and downloaded
more than 1 billion times. Figure 2 presents the result when
the app data files of Gmail are hijacked. Gmail updates the
email information based on the Sync Adapter mechanism.
By replacing the system database account.db in the shadow
system, our Gmail testing account can be logged in without
authentication. The execution of Gmail depends on some
other Google services such as Google Play Service and
Google Framework Service. However, these services can be

Attack

Real Device Shadow Device
(Emulator)

Figure 2. � The attack example of Gmail.

directly installed in the shadow system and the attack is not
affected. In our experiment, the emails in the shadow system
can be read persistently for a month without authentication.

+	 ��

����	��������
	

+#$	�������	'�������	���������	

Since the Android emulator has low financial cost and
simplifies the construction of the shadow system, detecting
the Android emulator can help to defend the proposed attack.
Basically, the emulators have different features with the real
devices. For example, the contacts, inbox text messages and
call logs are usually empty in the Android emulator. In
addition, the feature of WIFI, GPS, and CPU can also be
used for the Android emulator detection. Currently, some
researches [21, 17, 19, 15, 18] have also stressed the Android
emulator detection.

+#�	��������	��������	

When an app is developed, a reasonable timeout should be
designed for the user authentication. If the users are not re-
authenticated for a long period of time, the security risk will
increase.

To avoid the inconvenience caused by the frequent
authentications, some security tokens such as random
numbers can be added in the network protocols. For each
login, the app server allocates different security token and
update it regularly. If an app returns an old token while the
security token has been updated, the server will know that
the user data is hijacked and need to re-authenticate the user.
Therefore, the attackers have to analyze the complicated
communication protocols and deploy a Trojan in the user
devices for hijacking the token, which increases the
attacking cost and the exposing probability.

+# 	!��
���	'(�������	'����������	

TrustZone is a hardware-based security extension technology
incorporated with the ARM processors. Based on the
TrustZone, the trusted execution environment (TEE) can be
constructed [7]. The technique is effective to protect the core

TABLE II. � The effectiveness and disadvantages of the
solutions.

Solution Effectiveness disadvantage
Static Attribute Weak Easy to be Simulated

Security
Protocol Strong Protocol Redesign

TEE Strong Hardware Support

Habit-based - Not Accurate

DOI: 10.1051/, 04011 (2017) 712012

ITA 2017

ITM Web of Conferences itmconf/201 4011

4

services in the mobile devices and some manufacturers have
added this function into their newest smart phones. The
isolation mechanisms of TrustZone ensure that the guest OS
components cannot access the TEE’s resources even though
the attackers have the elevated privilege of OS. Meanwhile,
the hardware-level authentication can ensure the uniqueness
of devices and avoid the malicious attacks from the shadow
system effectively.

+#&	�����,��
��	��������������	

Habit-based authentication is to find the attackers by learning
the user history behaviors. For instance, if an app is used in a
rare time period such as midnight or a rare network IP, the
servers should re-authenticate their users actively. Based on
the machine learning approach, even the operation habits
such as rhythm click characteristics [10] can be considered
as the features to distinguish different users. Some of recent
researches [6, 16, 20, 9] also proposed the authentication on
touch gesture-based behavioral biometrics. Actually, some
apps such as QQ already have the functionality to prompt
users that their accounts are logged in at another city
according to the network IP.

Table II presents the effectiveness analysis of these
solutions. Firstly, verifying static device attributes just
increase the attack difficulty, and all these attributes can be
simulated simply by the attackers. By comparison, the
solutions based on the security protocols and the TEE is
strong against the data hijacking attack, especially for the
TEE. However, the technique of TEE depends on the
hardware support. Finally, the authentication based on the
user history behaviors may not be accurate at present. Most
of these techniques are still being researched. On other hand,
compared to the traditional computers, some information of
mobile devices such as locations and networks are more
variable. They are inaccurate and only auxiliary to the user
authentications.

*�����
���	
In this paper, we propose a kind of data hijacking attack for
the mobile apps. By simply hijacking the data files of the
apps to the constructed shadow system, the privacies of the
victims such as emails can be accessed by the attackers
persistently. We verify the effectiveness of the proposed
attack with 7 most popular Android apps released by the top
developers, and the results indicate that most of these apps
do not provide strategies against this attack or their defense
can be broken simply. Finally, we give some security
suggestions to the users for defeating the proposed attack.

�����-��������	
This work was supported by National Key Research and
Development Program under Grant No.2016YFB0800603,
National Natural Science Foundation of China (NSFC) under

Grant No.61402477, Strategic Priority Research Program of
the Chinese Academy of Sciences under Grant No.
XDA06010703, and the National Key Research and
Development Program of China under Grant No.
2016YFB0800403.

)�%������
	

[1]� 360 root. http://root.360.cn/.
[2]� Baidu root. http://root.baidu.com/.
[3]� How to root any device. http://www.xda-

developers.com/root/.
[4]� Jorrit chainfire jongma. how-to su: Guidelines for

problem-free su usage. http://su.chainfire.eu/, 2014.
[5]� Transferring data using sync adapters.

http://developer.android.com/training/syncadapters/inde
x.html.

[6]� A. A. Alariki and A. A. Manaf. Investigation of touch-
based user authentication features using android
smartphone. In Advanced Machine Learning
Technologies and Applications - Second International
Conference, AMLTA 2014, Cairo, Egypt, November
28-30, 2014. Proceedings, pages 135–144, 2014.

[7]� ARM. Trustzone.
http://www.arm.com/zh/products/processors/technol
ogies/trustzone/.

[8]� S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, and A.-R.
Sadeghi. Xmandroid: A new android evolution to
mitigate privilege escalation attacks. Technische
Universit¨at Darmstadt, Technical Report TR-2011-04,
2011.

[9]� J. G. Casanova, C. S. ´Avila, G. Bailador, and A. de
Santos Sierra. Authentication in mobile devices through
hand gesture recognition. Int. J. Inf. Sec., 11(2):65–83,
2012.

[10]� T. Chang, C. Tsai, Y. Yang, and P. Cheng. User
authentication using rhythm click characteristics for
non-keyboard devices. In Proceedings of the 2011
International Conference on Asia Agriculture and
Animal IPCBEE, volume 13, pages 167–171, 2011.

[11]� W. Enck, P. Gilbert, S. Han, V. Tendulkar, B. Chun, L.
P. Cox, J. Jung, P. McDaniel, and A. N. Sheth.
Taintdroid: An information-flow tracking system for
realtime privacy monitoring on smartphones. ACM
Trans. Comput. Syst., 32(2):5:1–5:29, 2014.

[12]� W. Enck, P. Gilbert, S. Han, V. Tendulkar, B. Chun, L.
P. Cox, J. Jung, P. McDaniel, and A. N. Sheth.
Taintdroid: An information-flow tracking system for
realtime privacy monitoring on smartphones. ACM
Trans. Comput. Syst., 32(2):5:1–5:29, 2014.

[13]� M. C. Grace, Y. Zhou, Z. Wang, and X. Jiang.
Systematic detection of capability leaks in stock
android smartphones. In 19th Annual Network and
Distributed System Security Symposium (NDSS’12),
San Diego, California, USA, Feb. 2012.

DOI: 10.1051/, 04011 (2017) 712012

ITA 2017

ITM Web of Conferences itmconf/201 4011

5

[14]� L. Li, A. Bartel, T. F. Bissyand´e, J. Klein, Y. L. Traon,
S. Arzt, S. Rasthofer, E. Bodden, D. Octeau, and P.
McDaniel. Iccta: Detecting inter-component privacy
leaks in android apps. In 37th IEEE/ACM International
Conference on Software Engineering (ICSE’15),
Florence, Italy, May. 2015, pages 280–291.

[15]� F. Matenaar and P. Schulz. Detecting android
sandboxes. http://www.dexlabs.org/blog/btdetect.

[16]� Y. Meng, D. S. Wong, R. Schlegel, and L. Kwok.
Touch gestures based biometric authentication scheme
for touchscreen mobile phones. In Information Security
and Cryptology - 8th International Conference, Inscrypt
2012, Beijing, China, November 28-30, 2012, Revised
Selected Papers, pages 331–350, 2012.

[17]� T. Petsas, G. Voyatzis, E. Athanasopoulos, M.
Polychronakis, and S. Ioannidis. Rage against the
virtual machine: hindering dynamic analysis of android
malware. In Proceedings of the Seventh European
Workshop on System Security, EuroSec 2014, April 13,
2014, Amsterdam, The Netherlands, pages 5:1–5:6,
2014.

[18]� T. Petsas, G. Voyatzis, E. Athanasopoulos, M.
Polychronakis, and S. Ioannidis. Rage against the
virtual machine: hindering dynamic analysis of android
malware. In Proceedings of the Seventh European
Workshop on System Security, page 5. ACM, 2014.

[19]� V. Rastogi, Y. Chen, and W. Enck. Appsplayground:
automatic security analysis of smartphone applications.
In Third ACM Conference on Data and Application
Security and Privacy, CODASPY’13, San Antonio, TX,
USA, February 18-20, 2013, pages 209–220, 2013.

[20]� N. Sae-Bae, K. Ahmed, K. Isbister, and N. D. Memon.
Biometric-rich gestures: a novel approach to
authentication on multi-touch devices. In CHI
Conference on Human Factors in Computing Systems,
CHI ’12, Austin, TX, USA - May 05 - 10, 2012, pages
977–986, 2012.

[21]� T. Vidas and N. Christin. Evading android runtime
analysis via sandbox detection. In 9th ACM
Symposium on Information, Computer and
Communications Security, ASIA CCS ’14, Kyoto,
Japan - June 03 - 06, 2014, pages 447–458, 2014.

[22]� H. Zhang, D. She, and Z. Qian. Android root and its
providers: A double-edged sword. In Proceedings of the
22nd ACM SIGSAC Conference on Computer and
Communications Security, pages 1093–1104. ACM,
2015.

[23]� Y. Zhou and X. Jiang. Dissecting android malware:
Characterization and evolution. In Security and Privacy
(SP), 2012 IEEE Symposium on, pages 95–109. IEEE,
2012

DOI: 10.1051/, 04011 (2017) 712012

ITA 2017

ITM Web of Conferences itmconf/201 4011

6

