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Abstract—Ship detection and classification is critical for national maritime security and national defense. Although some 
SAR (Synthetic Aperture Radar) image-based ship detection approaches have been proposed and used, they are not able to 
satisfy the requirement of real-world applications as the number of SAR sensors is limited, the resolution is low, and the 
revisit cycle is long. As massive optical remote sensing images of high resolution are available, ship detection and 
classification on theses images is becoming a promising technique, and has attracted great attention on applications 
including maritime security and traffic control. Some digital image processing methods have been proposed to detect ships 
in optical remote sensing images, but most of them face difficulty in terms of accuracy, performance and complexity. 
Recently, an autoencoder-based deep neural network with extreme learning machine was proposed, but it cannot meet the 
requirement of real-world applications as it only works with simple and small-scaled data sets. Therefore, in this paper, we 
propose a novel ship detection and classification approach which utilizes deep convolutional neural network (CNN) as the 
ship classifier. The performance of our proposed ship detection and classification approach was evaluated on a set of 
images downloaded from Google Earth at the resolution 0.5m. 99% detection accuracy and 95% classification accuracy 
were achieved. In model training, 75  speedup is achieved on 1 Nvidia Titanx GPU.  

1. Introduction 
Ship detection and classification in remote sensing images is 
of vital importance for maritime security and other 
applications, e.g., traffic surveillance, protection against 
illegal fisheries and sea pollution monitoring. With the 
increasing volume of satellite image data, automatic ship 
detection and classification from remote sensing images is a 
crucial application for both military and civilian fields. 
However, the detection systems are faced with the need to 
process massive amounts of incoming data and the 
requirement of nearly real-time capacity of reaction. Many 
valuable studies have been carried out in this field, but these 
typical algorithms are usually effective only for common 
image analysis, not for the task of ship detection and 
classification in remote sensing images which often contains 
vast data and many background noises. Most of the 
conventional methods face difficulty in accuracy, 
performance and complexity. 

In recent years, deep learning, or deep neural network has 
shown great promise in many practical applications. State-of-
the-art performance has been reported in several domains, 
ranging from speech recognition [1], visual object 
recognition [2] to text processing [3]. In fact, it could be 
argued that the network’s learning ability has been a crucial 
factor in the recent success of pattern recognition 
applications. It has also been observed that increasing the 
scale of deep learning with respect to the number of training 
examples or the number of model parameters, or both, can 
drastically improve ultimate classification accuracy [2]. 
Subsequently, the use of GPUs [1,2,4] is a significant 
advance in recent years that makes the training of modestly 
sized deep networks practical. Since the early work of ship 
detection and classification, it has been known that the 
variability and the richness of image data make it almost 
impossible to build an accurate detection and classification 
system entirely by hand. 

In terms of the sparseness of ship distribution on the sea,  
regions of ship targets are small parts in remote sensing 
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images. In this paper, ship candidates are coarsely extracted 
by image segmentation methods first, then actual ships are 
detected from all the ship candidates and finally classified 
into 10 different ship classes by deep learning. The proposed 
method consists of preprocessing (ship candidates extraction), 
ship detection and ship classification model training. The 
specific contributions of this paper are as follows: 1) Cohen-
Daubechies-Feauveau 9/7 (CDF 9/7) wavelet coefficients 
were extracted from the raw images and then ship candidates 
were extracted from the LL subband by conducting image 
enhancement, target-background segmentation and ship 
locating based on shape criteria; 2) a CNN model was 
implemented for ship detection and 99% accuracy was 
achieved; 3) for ship classification, using the proposed model, 
95% accuracy was achieved; 4) up to 75  speedup was 
achieved on a server with a GTX Titanx GPU. The flow 
diagram of the proposed ship detection and classification 
approach is shown in Figure 1. 

The reminder of this paper is organized as follows. 
Section  overviews the related work about this research; 
section  describes the processing of ship candidates 
extraction; section explains our proposed CNN model for 
ship detection and classification; section demonstrates the 
experiments and analysis about the results; section 
conducts this paper. 

                                                                                                           Figure 1. Flow diagram of the proposed ship detection and 
Classification approach.

2. Related Work 
As SAR images have advantages which mainly include 
relatively little influence of weather and time, ship detection 
in SAR images has extensively been studied [5~9]. The most 
common algorithms of ship detection are based on a constant 
false-alarm rate (CFAR) detector with a certain SAR images’ 
background distribution such as Gauss distribution [6], k-
distribution and Gamma distribution [8] or other 
combination [9]. Han and Chong [5] took a brief review of 
ship detection algorithms in polarimetric SAR images. 
Greidanus et al. [7] compared the performance of eight ship 
detection systems based on spaceborne systems by running a 
benchmark test on RADARSAT images of various modes. 
However, ship detection based on SAR has limitations. First, 
with a limited number of SAR satellites, the revisit cycle is 
relatively long and it cannot meet the needs of the 
application of real-time ship monitoring. Second, the 
resolution of most satellite SAR images is often not high 
enough to extract detailed ship information.  

      For ship detection and classification on optical 
images, traditional methods were widely studied [10~13]. 
Zhu [10] and Antelo et al. [11] extracted manually designed 
features from images such as shapes, textures and physical 
properties while Chen [12] and Wang [13] exploited 
Dynamic Bayesian Network to classify different kinds of 
ships, however, they cannot overcome the images’ variability 
and big volume problems. Recently, as the emergence of 
deep learning architectures, an autoencoder-based deep 
neural network combined with extreme learning machine 
was proposed [14] and it outperformed some other methods 
in detection accuracy. Tang [14] used SPOT-5 spaceborne 
optical images for ship detecting to verify this idea and 
achieved relatively satisfying results. However, it has some 
limitations: 1) as the image resolution is 5m, the extracted 
features are good enough to detect ships from waves, clouds 

and islands. But higher resolution is needed for recognizing 
different types of ships and the model should be expanded to 
improve its feature-representing ability which will need 
much more  

computation; 2) as autoencoder model uses full 
connection totally which leads to a large number of nodes 
and large computation; 3) autoencoder-based deep learning 
has no concept of local features, so it cannot extract enough 
detail features when the model is expanded; 4) research 
indicates that autoencoder-based deep learning is more 
appropriate for speech recognition [18], hand-writing 
recognition [19] and texture classification [20]. It only works 
with simple image data set, so cannot satisfy the requirement 
of real-world applications. 

3. Ship Candidates Extraction 
Ship candidates extraction is the first step of our proposed 
method which preprocesses the raw images and extracts all 
ship candidates. First of all, CDF 9/7 wavelet coefficients are 
extracted from images. Instead of reducing processing time 
by passively cutting an image into tiles or scaling to a low-
resolution version, extracting wavelet features can 
impressively increase the detection efficiency. After a 2-D 
discrete wavelet transform (DWT), the original image is 
decomposed into a low-frequency subband (denoted as LL) 
and horizontal/vertical/diagonal high-frequency subbands 
(denoted as LH, HL, and HH). The wavelet coefficients in 
different subbands tend to reflect different properties of the 
original image. Generally speaking, the low frequency 
contains most of the global information, while the high 
frequency represents local or detail information. Ship 
candidates are extracted from the low-frequency subband LL 
by conducting image enhancement, target-background 
segmentation and shape criteria-based ship locating. 
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3.1 Image Enhancement 

In image enhancement, in order to remove uneven 
illumination, a morphological operator, i.e., top-hat 
transform (THT), is used for ship candidates extraction and 
background suppression. As ships are usually brighter than 
their surroundings, the white THT is employed in the 
proposed work [shown in Figure 2(a)]. The mathematical 
definition of white THT is as follows [14]:  

                          bfffTw ���)(                                  (1) 

where f is the input LL coefficients of the original image, 
� denotes opening operation, and Tw is the enhanced image. 
In the simulations, b is set as a circular structuring element 
with a radius of 12. 

Figure 2. The process of ship candidates extracting. 

3.2 Target-Background Segmentation 

In target-background segmentation, each input image is 
binarized by the Otsu algorithm [15]. Otsu is a widely used 
method to automatically perform clustering-based image 
thresholding. The algorithm assumes that the image contains 
two classes of pixels following bi-modal histogram 
(foreground pixels and background pixels), then it calculates 
the optimum threshold to separate the two classes so that 
their combined spread (intra-class variance) is minimal and 
their inter-class variance is maximal. After that, connected 
regions are labeled. As the binarized image usually remains 
small holes in the sea waves or clouds, then the median 
filtering, morphology dilation and erosion (circular 
structuring element with a radius of three) are applied to fill 
the isolated holes. Finally, the masks of sea waves, clouds, 
islands and ship candidates are segmented [shown in Figure 
2(b)]. In the following, ship candidates will be further 
extracted by using the unique shape properties of ships. 

3.3 Ship Locating 

In ship locating, the ship candidates are further extracted by 
using the unique shape properties of ships, including the area, 
the major minor axis ratio and the compactness [14]. Area 
equals the number of pixels in the corresponding connected 
region. Area is used to cut off the clouds, sea waves and 
other obviously large/small false targets. Major minor axis 
ratio is defined as 

                                
axisS

axisL

ls

L

L
R �                                     (2) 

where 
axisL

L
 and 

axisS
L  are the length of long and short axes of 

the bounding rectangle, respectively. Compactness measures 
the degree of circular similarity, and it is defined as 

                           
Area

Perimeter
sCompactnes

2

�                        (3)  

By using these shape criteria, we can obtain the coarse 
locations of ship candidates [shown in Figure 2(c)].  

 In the experiments, the size of the testing images is about 
1000 1000 (in pixels) with resolution 0.5m. The size of 
ship candidates is supported to be larger than 20 in pixels. In 
this case, the regions with area smaller than 20 would be 
removed. Moreover, as the long axis of ship should be longer 
than the minor axis, the major minor axis ratio is selected as 
1.2. Compactness is set as 80 to exclude the regions which 
are obviously irregular. Note that some of the pseudo-targets 
may be included in the extracted regions; however, they can 
be removed in the process of ship detection by CNN in 
Section .

4. Ship Detection and Classification 
by CNN 
Ship detection by deep learning is the next step of our 
proposed method. It detects actual ships from all the ship 
candidates and then the actual ships are classified into 
different types by CNN. 

The state-of-the-art ship detection approaches extract 
features using feature operators or feature descriptors, then 
use traditional machine learning methods for detection. 
Features extracted by these methods generally have some 
fundamental limitations in practical applications. For 
example, they may have poor performances when the images 
are corrupted by blur, distortion, or illumination which 
commonly exist in remote sensing images. So the processed 
images may contain various pseudo-targets, e.g., islands, 
clouds, sea waves, etc. Traditional machine learning 
algorithms, e.g., support vector machine (SVM), may have 
difficulties in efficiently handling such highly varying inputs. 
When dealing with highly variant conditions, the 
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computation is exponentially increased. Relatively, 
automatically learned features by deep learning from images 
can help to tackle these issues. Recent works have shown 
that the features extracted by deep learning outperform those 
manually designed ones on target detection. 

4.1Convolutional Neural Networks 

CNN is a kind of deep learning networks and it combines 
three architectural ideas to ensure some degree of shift, scale 
and distortion invariance: local receptive fields, shared 
weights and spatial or temporal sub-sampling. With local 
receptive fields, neurons can extract elementary visual 
features such as oriented edges, end-points and corners. 
These features are then combined by the subsequent layers in 
order to detect higher-order features. Units in a layer are 
organized in planes within which all the units share the same 
set of weights. The set of outputs of the units in such a plane 
is called a feature map. Units in a feature map are all 
constrained to perform the same operation on different parts 
of the image. A complete convolutional layer is composed of 
several feature maps (with different weight vectors), so that 
multiple features can be extracted from each location. An 
implementation of a feature map is equivalent to a 
convolution, followed by an additive bias and squashing 
function, hence the name convolutional neuron networks.  

Once a feature has been detected, its exact location 
becomes less important. Only its approximate position 
relative to other features is relevant. Not only are the precise 
positions of each of those features irrelevant to identify the 
pattern, it is potentially harmful because the positions are 
likely to vary for different instances. A simple way to reduce 
the precision with which the positions of distinctive features 
are encoded in a feature map is to reduce the spatial 
resolution of the feature map. This can be achieved with the 
so-called pooling layers (or sub-sampling layers) which 
perform a local averaging or maximizing and a sub-sampling, 
reducing the resolution of the feature map, and reducing the 
sensitivity of the output to shifts and distortions. Successive 
layers of convolution and sub-sampling are typically 
alternated. 

Since all the weights are learned with back-propagation, 
CNNs can be seen as synthesizing their own feature 
extractors. The weight-sharing technique can reduce the 
number of free parameters, thereby reducing the gap between 
test error and training error. 

4.2Training for Ship Detection and Classification 

 In training, firstly, we solve a two-class (ship and non-ship) 
classification problem. We constructed a CNN consisting of 
four convolutional, three max-pooling and a fully-connection 
layer with a final 2-way softmax classifier for ship detection. 
Its structure is shown in Figure 3, where 64 64 is the size 
(in pixels) of each input image with RGB three channels, 5
5, 5 5, 3 3 and 3 3 are the sizes of convolution kernels, 

30 30, 13 13 ,11 11 and 4 4 are the sizes of feature 
maps in each convolutional layer, 64, 128, 256 and 384 are 
the numbers of feature maps in each convolutional layer, 512 
is the number of output units of fully-connection layer and 
the number ‘2’ at the right end is for the 2-way softmax 
classifier in detection. After ship detection, all the actual 
ships are detected. To classify all the ships into 10 different 
types, this model is used for ship classification by changing 
the number ‘2’ to ‘10’ at the right end. 

Figure 3. Our proposed CNN model. 

The standard way to model a neuron’s output f as a 
function of its input x is with )tanh()( xxf � or 1)1()( ���� x

exf .
In terms of training time with stochastic gradient descent, 
these saturating nonlinearities are much slower than the non-
saturating nonlinearity ),0max()( xxf � . Following Nair and 
Hinton [16], we refer to neurons with this nonlinearity as 
Rectified Linear Units (ReLUs). Deep CNNs with ReLUs 
train several times faster than their equivalents with tanh 
units.  

In order to reduce test errors, combining the predictions 
of many different models is a very successful way. But it 
appears to be too expensive for big neural networks. 
However, there is a very efficient version of model 
combination that only costs about a factor of two in training. 
The recently introduced technique, called ‘dropout’ [17], 
works by setting the output of each hidden neuron to zero 
with probability 0.5. The neurons which are ‘dropped out’ in 
this way do not contribute to the forward pass and do not 
participate in back-propagation. So every time an input is 
presented, the neural network samples a different 
architecture, but all these architectures share weights.  At test 
time, we use all the neurons but multiply their outputs by 0.5, 
which is a reasonable approximation to taking the geometric 
mean of the predictive distributions produced by the 
exponentially-many dropout networks. Without dropout, our 
network exhibits substantial overfitting. Dropout roughly 
doubles the number of iterations required to converge. 
     For the other configurations of the network model, we 
trained our models using stochastic gradient descent with a 
batch size of 20 examples, momentum of 0.9, an equal 
learning rate 0.001 for all layers and weight decay of 0.0005. 
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5. Experiments 

5.1 Platform Description 

We conducted the training on a server with Intel Core i5-
4460 CPU @3.20GHz, 8.00GB RAM and GTX TitanX card. 
Matlab2014a and cuda 7.0 were used. 

5.2 Data Sets 

Images shown in Figure 4(1) were downloaded from Google 
Earth and after ship candidates extraction, a dataset 
consisting 1200 images (containing ships, clouds, sea waves 
and islands) was obtained and used for performance 
evaluation each in 64 64 pixels, 4/5 used for network 
training and 1/5 for testing.  

 In order to be more convincing, another dataset shown in 
Figure 4(2), consisting 1500 images (10 categories of ships) 
each in 256 64 pixels with higher resolution was also 
downloaded and used for performance evaluation. 

Figure 4. Datasets. 

5.3 Experiment and Results 

An equal learning rate 0.001 is used for all layers, meanwhile, 
values of the batch size, momentum and weight decay are set 
as 20, 0.9, 0.0005 correspondingly. ‘Dropout’ regularization 
method is used to reduce over fitting in fully-connected 
layers. This depth of the model seems to be important: we 
found that removing any convolutional layer resulted in 
inferior performance. Eventually, 99% detection accuracy 
and 92% classification accuracy were achieved in dataset (1), 
which is comparable with some state-of-the-art algorithms, 
such as SVM. In dataset (2), even higher classification 
accuracy 95% was achieved, which is closely related to the 
higher spatial resolution. Classifying error rate of each type 
of ship by CNN is shown in TABLE . Seventy-five times 
(75 ) speedup was achieved on a GTX TitanX card. 

TABLE I. CLASSIFYING ERROR RATE of EACH TYPE OF SHIP BY CNN 
ON DATASET (2) 

Ship class C0 C1 C2 C3 C4 C5 C6 C7 C8 C9

Error rate 13% 6.5% 3.3% 10% 10% 6.5% 3.3% 0% 3.3% 3.3
%

As a comparison, Support Vector Machine (SVM) and 
Neural Network (NN) were used for classification on dataset 
(2), and achieved 87% and 81% accuracy respectively shown 
in TABLE .

TABLE II. CLASSIFYING ACCURACY ON DATASET (2) 

Method CNN SVM Neural Networ
k

Accuracy 95% 87% 81% 

6. Conclusion 
Ship detection and classification is a widely studied topic 
both in civilian and military applications. Environmental 
complexity of marine makes it hard to extract ships from 
remote sensing optical images both effectively and 
efficiently. In this paper, we proposed a ship detection and 
classification method on remote sensing optical images. 
Firstly, CDF 9/7 wavelet coefficients were extracted from 
the raw images and the LL subband was used in ship 
candidates extraction to reduce the processing time. Then 
ship candidates are extracted by conducting image 
enhancement, target-background segmentation and ship 
locating based on shape criteria. Note that there are still 
nonship targets in the ship candidates, so in the next step a 
CNN was trained to detect actual ships from all candidates. 
Finally, using the CNN model, we classified all the actual 
ships into different ships. The model was trained on remote 
sensing images downloaded from Google Earth. Eventually, 
99% detection accuracy and 95% classification accuracy 
were achieved, which is comparable with some state-of-the-
art algorithms. Experiments showed that CNN, as a deep 
neural network is a good model for automatically feature 
learning and extraction. And up to 75 speedup was 
achieved on a server with a GTX TitanX GPU which 
indicates its potential for real-time processing. 
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