
* Corresponding author: m.tokovarov@pollub.pl

Modification of Adaptive Huffman Coding for use in encoding
large alphabets

Mikhail Tokovarov1,*
1Lublin University of Technology, Electrical Engineering and Computer Science Faculty, Institute of Computer Science, Nadbystrzycka 36B,
20-618 Lublin, Poland

Abstract. The paper presents the modification of Adaptive Huffman Coding method – lossless data
compression technique used in data transmission. The modification was related to the process of adding a
new character to the coding tree, namely, the author proposes to introduce two special nodes instead of
single NYT (not yet transmitted) node as in the classic method. One of the nodes is responsible for
indicating the place in the tree a new node is attached to. The other node is used for sending the signal
indicating the appearance of a character which is not presented in the tree. The modified method was
compared with existing methods of coding in terms of overall data compression ratio and performance.
The proposed method may be used for large alphabets i.e. for encoding the whole words instead of
separate characters, when new elements are added to the tree comparatively frequently.

1 Introduction
Efficiency and speed – the two issues that the current
world of technology is centred at. Information
technology (IT) is no exception in this matter. Such an
area of IT as social media has become extremely popular
and widely used, so that high transmission speed has
gained a great importance. One way of obtaining high
communication performance is developing more
efficient hardware. The other one is to develop the
software that would allow to compress the data in such
a way that would reduce the size of data but not affect its
information content. In other words, to encode the data
by the method called lossless data compression. This
term means that the methods of this type allow the
original data to be perfectly reconstructed from the
encoded message.

Binary or entropy encoding are the most popular
branches among lossless data compression methods. The
term entropy encoding means that the length of a code is
approximately proportional to the negative logarithm of
the occurrence of the character encoded with the code.
Simplifying it may be said: the higher probability of the
character is, the shorter is its code [1].

Several methods of entropy encoding exist, these are
the most frequently used methods of this branch:
- arithmetic coding,
- range coding,
- Huffman coding,
- asymmetric Numeral Systems.

Arithmetic and Range coding are quite similar with
some differences [2], but arithmetic coding is covered by
patent, that is why, due to lack of patent coverage,

Huffman coding is frequently chosen for implementing
open source projects [3]. The present paper contains the
description of the modification that may help to improve
the algorithm of adaptive Huffman coding in terms of
data savings.

2 Study of related works
Huffman coding has been developed in 1952 by David
Huffman. He developed the method during his Sc. D. study
if MIT and published in the 1952 paper "A Method for
the Construction of Minimum-Redundancy Codes" [1].
Huffman coding is the most optimal among methods
encoding symbols separately, but it is not always optimal
compared to some other compression methods, such as
e.g. arithmetic and Lempel-Ziv-Welch coding [4].
However, the last two methods, as it has been said, are
patent-covered, so developers often tend to use Huffman
coding [3]. Comparative simplicity and high speed due
to lack of arithmetic calculations are the advantages of
this method as well. Due to these reasons Huffman
coding is often used for developing encoding engines for
many applications in various areas [5].

The fact that billions of people are exchanging
gigantic amount of data every day stimulated
development of compression technologies. This topic
constantly presents significant interest for researches, the
following works may be presented as the examples:

Jarosław Duda et al. worked out the method called
Asymmetric Numeral Systems, the method was
developed on the basis of the two encoding methods:
arithmetic and Huffman coding. It combined the
advantages from the two methods:

ITM Web of Conferences 15, 01004 (2017)	 DOI: 10.1051/itmconf/20171501004
CMES’17

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution
License 4.0 (http://creativecommons.org/licenses/by/4.0/).

- near accurate symbol probabilities hence better
compression ratio of arithmetic coding, and capability to
fast encoding and decoding of Huffman coding [6];
- Facebook Zstandard algorithm is based on LZ77
dictionary coder and tANS – effective entropy encoding
based on the Huffman method [7];
- Brotli coding algorithm which is used in most of the
modern Internet Browsers, such as Chrome, Opera.

Similarly, to the Zstandard it is based on the
combination of LZ77 and modified Huffman coding [8].
So, it may be clearly seen that despite its long history the
Huffman encoding algorithm still presents great interest
for application.

3 Huffman coding explained

3.1 Static Huffman coding algorithm

The concept of Huffman coding is based on the binary
tree. The tree consists of two kinds of nodes:
intermediate nodes, i.e. the nodes having descendant
nodes and the nodes which do not have descendants.
These nodes are called leaves. A character may be stored
only in a leaf node, this condition ensures the character
codes to be prefix-free [1]. It means, that no character
has the code, that would be the initial segment of another
character's code. As the example of prefix codes, the
following bit sequences may be used: 110101 and 110.
The code 110 is identical to the initial segment of the
code 110101, so these two codes may not be decoded
unambiguously. The tree is organized according to the
following principles [4]:
a) any node in the tree may not have a single descendant:
either two or none;
b) each node in the tree has the number assigned to it.
This number is called weight. Depending on the type of
the node its weight may have the following meanings:
- if the node is a leaf, the weight value is equal to the
number of times the character stored in the leaf occurs in
the message sent;
- if the node is an intermediate node its weight value is
equal to the sum of its descendants' weights.
c) the weight of the right descendant should be not less
than the weight of the left descendant.

The codes for every character are defined as the path
in the binary tree from the root to the leaf containing the
character (See Figure 1), e.g. the blank space character
which is the most frequent character in the tree has the
code 111, and the 'p' character, which occurs only once
has the code 10011 [4].

The Figure 1 presents the tree constructed in
accordance with static method of Huffman coding. The
main feature of it is that the tree is constructed before the
transmission is started on the basis of analysis of the
probabilities of separate characters in the whole message
[1].

The data compression ratio(DCR) is described by the
formula (1):

𝐷𝐷𝐷𝐷𝐷𝐷 𝐷 𝑛𝑛
𝑛𝑛 (1)

But the compression ratio does not show actual space
saving as besides of encoded message the table with the
code-character pairs should be transmitted. For that
reason, the other index should be introduced. The sent-
to-original-bits ratio(SOBR) is described in accordance
with the formula below:

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑛𝑛𝑛
𝑛𝑛 (2)

The only way to make SOBR equal to DCR is to use
one coding tree for all messages, but this tree will not be
optimal since the character probabilities may be different
in various messages.

Fig. 1. Huffman tree generated based on the phrase "this is an
example of a Huffman tree".

3.2 Adaptive Huffman coding algorithm

The method of adaptive Huffman Coding (AHC)
reviewed in the article was proposed by Jeffrey Vitter in
his paper published in 1987 [9].

The algorithm working during creating the tree may
be observed in Figure 2.

Fig. 2. The algorithm of AHC, example for encoding the word
"abb".

This method is based on the same principles as the
static method plus the following extensions [9]:
a) every node in the tree has its key number, the key
numbers are arranged in the following way:
- maximum value of the key number in the tree may be
calculated as:

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝑘 𝑘 𝑘 𝑘𝑘 𝑘 𝑘 (3)

- the root has the largest key number;
- an ancestor has larger number than any of its
descendants;
- the right descendant should have larger key number
than the left descendant;
b) after input of any character the tree is updated;

ITM Web of Conferences 15, 01004 (2017)	 DOI: 10.1051/itmconf/20171501004
CMES’17

2

- near accurate symbol probabilities hence better
compression ratio of arithmetic coding, and capability to
fast encoding and decoding of Huffman coding [6];
- Facebook Zstandard algorithm is based on LZ77
dictionary coder and tANS – effective entropy encoding
based on the Huffman method [7];
- Brotli coding algorithm which is used in most of the
modern Internet Browsers, such as Chrome, Opera.

Similarly, to the Zstandard it is based on the
combination of LZ77 and modified Huffman coding [8].
So, it may be clearly seen that despite its long history the
Huffman encoding algorithm still presents great interest
for application.

3 Huffman coding explained

3.1 Static Huffman coding algorithm

The concept of Huffman coding is based on the binary
tree. The tree consists of two kinds of nodes:
intermediate nodes, i.e. the nodes having descendant
nodes and the nodes which do not have descendants.
These nodes are called leaves. A character may be stored
only in a leaf node, this condition ensures the character
codes to be prefix-free [1]. It means, that no character
has the code, that would be the initial segment of another
character's code. As the example of prefix codes, the
following bit sequences may be used: 110101 and 110.
The code 110 is identical to the initial segment of the
code 110101, so these two codes may not be decoded
unambiguously. The tree is organized according to the
following principles [4]:
a) any node in the tree may not have a single descendant:
either two or none;
b) each node in the tree has the number assigned to it.
This number is called weight. Depending on the type of
the node its weight may have the following meanings:
- if the node is a leaf, the weight value is equal to the
number of times the character stored in the leaf occurs in
the message sent;
- if the node is an intermediate node its weight value is
equal to the sum of its descendants' weights.
c) the weight of the right descendant should be not less
than the weight of the left descendant.

The codes for every character are defined as the path
in the binary tree from the root to the leaf containing the
character (See Figure 1), e.g. the blank space character
which is the most frequent character in the tree has the
code 111, and the 'p' character, which occurs only once
has the code 10011 [4].

The Figure 1 presents the tree constructed in
accordance with static method of Huffman coding. The
main feature of it is that the tree is constructed before the
transmission is started on the basis of analysis of the
probabilities of separate characters in the whole message
[1].

The data compression ratio(DCR) is described by the
formula (1):

𝐷𝐷𝐷𝐷𝐷𝐷 𝐷 𝑛𝑛
𝑛𝑛 (1)

But the compression ratio does not show actual space
saving as besides of encoded message the table with the
code-character pairs should be transmitted. For that
reason, the other index should be introduced. The sent-
to-original-bits ratio(SOBR) is described in accordance
with the formula below:

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑛𝑛𝑛
𝑛𝑛 (2)

The only way to make SOBR equal to DCR is to use
one coding tree for all messages, but this tree will not be
optimal since the character probabilities may be different
in various messages.

Fig. 1. Huffman tree generated based on the phrase "this is an
example of a Huffman tree".

3.2 Adaptive Huffman coding algorithm

The method of adaptive Huffman Coding (AHC)
reviewed in the article was proposed by Jeffrey Vitter in
his paper published in 1987 [9].

The algorithm working during creating the tree may
be observed in Figure 2.

Fig. 2. The algorithm of AHC, example for encoding the word
"abb".

This method is based on the same principles as the
static method plus the following extensions [9]:
a) every node in the tree has its key number, the key
numbers are arranged in the following way:
- maximum value of the key number in the tree may be
calculated as:

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝑘 𝑘 𝑘 𝑘𝑘 𝑘 𝑘 (3)

- the root has the largest key number;
- an ancestor has larger number than any of its
descendants;
- the right descendant should have larger key number
than the left descendant;
b) after input of any character the tree is updated;

c) a special leaf node called NYT (not yet transmitted) is
used for both indicating the place for a new character
and for signalizing that the new character is obtained, its
key has the least value in the tree, its weight always
equals to zero;
d) a set of nodes with equal weight values is called a block.

The encoding algorithm is described in Listing 1. The
algorithm contains only the process of updating the tree
and does not consider communication. If the
communication algorithm based on the AHC is used, the
process becomes more complicated. The idea may be
presented as follows:
- transmitter and receiver have identical trees which are
updated in accordance with the algorithm described in
the Listing 1;
- the communication operates in the way presented in the
Listing 2.

As it may be seen from the Listing 2, in case of AHC
not only the codes of the characters are transmitted.
Auxiliary codes such as the code of NYTNode and ASCII
codes of the new-coming characters are being
transmitted as well. The necessity to transmit auxiliary
codes negatively influences SOBR causing it to increase.
Due to this fact overall data saving decreases. But along
with higher degree of complexity compared to static
Huffman coding ACH may still present interest as
lossless data compression technique after implementing
the modifications described in the next chapters.

3.3 Encoding words instead of separate characters

The title of the article contains the phrase "large
alphabet". But the chapter is focused at encoding entire
words. What is the connection between these two facts?
The idea is that in the method proposed, the words are
treated as separate characters, so the leaves of the coding
tree store not characters, but complete words, so these
words are treated as separate characters in a large
alphabet. The author does not claim, that this idea
belongs to him. This technique is quite well known and
was presented in many works [5, 10].

The greatest success may be achieved in the case of
applying this method for encoding the words of an
analytic language. An analytic language is the type of
language where grammatical relationships are
established by using strict word order, prepositions,
postpositions, particles and special auxiliary words that
do not have individual meaning and only indicate some
grammatical categories. Analytic languages do not have
extensive systems of conjugation and declension as
synthetic languages do [11].

In many cases a word in a synthetic language may
have several forms which are treated as individual words
by encoding algorithm. This approach would cause the
coding tree to be excessively extensive. It is worth to
note that the statistics show that around 95% of all
common English texts may be covered by 7000 words
[11, 13]. The situation becomes even more optimistic
when communication in social networks and mass media
is considered.

Listing 1. Pseudocode presenting updating tree of AHC.

UpdateTree(character ch)
1 if ch is not found in the tree
2 make a newLeafNode as the right descendant of the
 oldNYTNode;
3 newLeafNode's keyValue := oldNYTNode's
 keyValue-1;
4 make a newNYTNode as the left descendant
 of the oldNYTNode
5 newNYTNode's keyValue := oldNYTNode's
 keyValue-2;
6 NYTNode := newNYTNode;
7 end if
8 activeNode := node containing ch;
9 do
10 find the nodeWithTheLargestKeyNumber
 in the activeNode's block;
11 if the nodeWithTheLargestKeyNumber's keyNumber
 > activeNode's keyNumber
12 swap nodeWithTheLargestKeyNumber
 and activeNode;
13 swap nodeWithTheLargestKeyNumber's
 keyNumber and activeNode's keyNumber;
 //key numbers should not change the place
14 end if
15 activeNode's weight := activeNode's weight+1;
16 activeNode := activeNode's ancestor;
17 while activeNode <> root

Listing 2. Communication with the use of data compression
based on AHC.

Transmitter Receiver
Transmit (character ch)
1 if ch is found in the tree
2 send the code of ch

 bit by bit;
3 else
4 send the code of
 NYTNode bit by bit;
5 send the ASCII code
 of ch;
6 end if
7 UpdateTree(ch);

Receiving is performed in the
stream, i.e. in infinite loop.
Receive()
1 while (true)
2 receive one bit from
 the transmitter,
3 add received bit to
 bitSequence;
4 if bitSequence
 leads to a leaf node
5 obtain the character
 ch stored in the node;
6 add ch to decoded
 message;
7 UpdateTree(ch);
8 set bitSequence
 empty;
9 end if
10 if bitSequence leads
 to NYTNode
11 receive 8 bit;
12 convert received 8
 bit to character ch;
13 add ch to decoded
 message;
14 UpdateTree(ch);
15 set bitSequence
 empty;
16 end if
17 end while

ITM Web of Conferences 15, 01004 (2017)	 DOI: 10.1051/itmconf/20171501004
CMES’17

3

To prove the feasibility of the method the term of
information entropy should be mentioned. This term has
several definitions:
- measure of unpredictability of the state;
- expected (mean) value of information contained in
a message.

The value of entropy is calculated by the following
formula:

Entropy of i-th character in a message:

𝐼𝐼𝑖𝑖 = −𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑝𝑝𝑖𝑖 (4)

Average entropy of a message:

𝐻𝐻 𝐻 ∑ −𝑝𝑝𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑝𝑝𝑖𝑖𝑛𝑛
𝑖𝑖𝑖𝑖 = ∑ −𝑝𝑝𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝐼𝐼𝑖𝑖𝑛𝑛

𝑖𝑖𝑖𝑖 (5)

where: pi - probability of i-th character in the message;
n - number of unique characters in the message;
m - logarithm base, usually taken equal to 2, as binary
system is used in computer technics.

Practically it may be stayed, that the average entropy
of a message is equal to the least possible average code
length of the characters contained in the message [1].

It is well known, that amongst discrete distribution
with equal number of states the uniform distribution has
the maximum value of entropy [12]. Every state of the
uniform distribution has the same probability equal to
1/n, where n is the number of states, which yields the
entropy:

𝐻𝐻𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 𝑙𝑙𝑙𝑙𝑙𝑙2𝑛𝑛 (6)

To estimate the maximum entropy, the maximum
number of words encoded should be defined. It has been
decided to take the max number of words equal to
16384, which yields the maximal entropy equals to 14
bits. The max word number is taken because the
practical number of stored words may be higher than
7000 because of some capitalized words, abbreviations,
mistakes and user-defined words. To roughly estimate
the compression ratio, the average length of English
word is used, its value approximately equals to 4 letters.
In case if ASCII coding is taken into consideration the
average length in bits equals to 32. Based on this value
the average compression ratio equals to 14/32 ≈ 0.43.
This estimation is fairly promising as average
compression ratio for separate-character AHC is
about 0.55 [4].

As it is stated in the previous chapter, sent-to-original
bit ratio tends to be significantly higher than data
compression ratio for complete-word AHC. This effect is
especially noticeable during the phase of initial building
the coding tree, when new words are coming especially
frequently. There are two factors that affect SOBR in
this case: sending the complete ASCII codes of the new-
coming words and sending the NYT bit sequence.

Precoded dictionaries may be used to decrease the
influence of first factor. This possibility is not
considered in the current paper.

However, the second factor, i.e. sending the NYT bit
sequence will be optimized within the frame of this
research. As it is described in the chapter 2 the NYT is
used for both indicating the place in the tree the new-

coming word is attached to and for sending the signal
meaning that the ASCII code of the new-coming signal
is going to be sent. This fact provides the opportunity for
optimising the algorithm.

4 Modification

4.1 Introduction of NCW node

The NYT node should only act as the pointer for the
new-coming word. Its weight still should be 0 and its
key number should have the least value in the tree. The
new node NCW should be introduced to the tree. Its
initial weight should be equal 0. This node should be
used for sending the "new-coming word" signal. The
introduced NCW node should be treated as a usual leaf
node, i.e. after sending the bit sequence corresponding to
the NCW node, the procedure described in the lines 8-17
of the Listing 1 should be carried out for the NCW node.
The Listing 3 presents the modified algorithm.

Listing 3. Modified algorithm.

Transmitter Receiver
Transmit (character ch)
1 if ch is found in the tree
2 send the code of ch bit
by bit;
3 else
4 send the code of
NCWNode bit by bit;
5
updateTree(NCWNode);
6 send the ASCII code of
ch;
7 end if
8 UpdateTree(ch);

Receiving is performed in the
stream, i.e. in infinite loop.
Receive()
1 while (true)
2 receive one bit from the
 transmitter,
3 add received bit to
 bitSequence;
4 if bitSequence leads to a
 leaf node
5 obtain the character
 ch stored in the node;
6 add ch to decoded
 message;
7 UpdateTree(ch);
8 set bitSequenc
 empty;
9 end if
10 if bitSequence leads to
 NCWNode
11updateTree(NCWNode);
12 receive 8 bit;
13 convert received 8 bit
 to character ch;
14 add ch to decoded
 message;
15 UpdateTree(ch);
16 set bitSequence empty;
17 end if
18 end while

The Figure 3 presents the difference between
modified and non-modified method. The phrase
"A friend in need is a friend indeed" was used for the
test. As it may be noticed the weight of the NCW node
is equal to the number of the unique leaf nodes.

ITM Web of Conferences 15, 01004 (2017)	 DOI: 10.1051/itmconf/20171501004
CMES’17

4

To prove the feasibility of the method the term of
information entropy should be mentioned. This term has
several definitions:
- measure of unpredictability of the state;
- expected (mean) value of information contained in
a message.

The value of entropy is calculated by the following
formula:

Entropy of i-th character in a message:

𝐼𝐼𝑖𝑖 = −𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑝𝑝𝑖𝑖 (4)

Average entropy of a message:

𝐻𝐻 𝐻 ∑ −𝑝𝑝𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑝𝑝𝑖𝑖𝑛𝑛
𝑖𝑖𝑖𝑖 = ∑ −𝑝𝑝𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝐼𝐼𝑖𝑖𝑛𝑛

𝑖𝑖𝑖𝑖 (5)

where: pi - probability of i-th character in the message;
n - number of unique characters in the message;
m - logarithm base, usually taken equal to 2, as binary
system is used in computer technics.

Practically it may be stayed, that the average entropy
of a message is equal to the least possible average code
length of the characters contained in the message [1].

It is well known, that amongst discrete distribution
with equal number of states the uniform distribution has
the maximum value of entropy [12]. Every state of the
uniform distribution has the same probability equal to
1/n, where n is the number of states, which yields the
entropy:

𝐻𝐻𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 𝑙𝑙𝑙𝑙𝑙𝑙2𝑛𝑛 (6)

To estimate the maximum entropy, the maximum
number of words encoded should be defined. It has been
decided to take the max number of words equal to
16384, which yields the maximal entropy equals to 14
bits. The max word number is taken because the
practical number of stored words may be higher than
7000 because of some capitalized words, abbreviations,
mistakes and user-defined words. To roughly estimate
the compression ratio, the average length of English
word is used, its value approximately equals to 4 letters.
In case if ASCII coding is taken into consideration the
average length in bits equals to 32. Based on this value
the average compression ratio equals to 14/32 ≈ 0.43.
This estimation is fairly promising as average
compression ratio for separate-character AHC is
about 0.55 [4].

As it is stated in the previous chapter, sent-to-original
bit ratio tends to be significantly higher than data
compression ratio for complete-word AHC. This effect is
especially noticeable during the phase of initial building
the coding tree, when new words are coming especially
frequently. There are two factors that affect SOBR in
this case: sending the complete ASCII codes of the new-
coming words and sending the NYT bit sequence.

Precoded dictionaries may be used to decrease the
influence of first factor. This possibility is not
considered in the current paper.

However, the second factor, i.e. sending the NYT bit
sequence will be optimized within the frame of this
research. As it is described in the chapter 2 the NYT is
used for both indicating the place in the tree the new-

coming word is attached to and for sending the signal
meaning that the ASCII code of the new-coming signal
is going to be sent. This fact provides the opportunity for
optimising the algorithm.

4 Modification

4.1 Introduction of NCW node

The NYT node should only act as the pointer for the
new-coming word. Its weight still should be 0 and its
key number should have the least value in the tree. The
new node NCW should be introduced to the tree. Its
initial weight should be equal 0. This node should be
used for sending the "new-coming word" signal. The
introduced NCW node should be treated as a usual leaf
node, i.e. after sending the bit sequence corresponding to
the NCW node, the procedure described in the lines 8-17
of the Listing 1 should be carried out for the NCW node.
The Listing 3 presents the modified algorithm.

Listing 3. Modified algorithm.

Transmitter Receiver
Transmit (character ch)
1 if ch is found in the tree
2 send the code of ch bit
by bit;
3 else
4 send the code of
NCWNode bit by bit;
5
updateTree(NCWNode);
6 send the ASCII code of
ch;
7 end if
8 UpdateTree(ch);

Receiving is performed in the
stream, i.e. in infinite loop.
Receive()
1 while (true)
2 receive one bit from the
 transmitter,
3 add received bit to
 bitSequence;
4 if bitSequence leads to a
 leaf node
5 obtain the character
 ch stored in the node;
6 add ch to decoded
 message;
7 UpdateTree(ch);
8 set bitSequenc
 empty;
9 end if
10 if bitSequence leads to
 NCWNode
11updateTree(NCWNode);
12 receive 8 bit;
13 convert received 8 bit
 to character ch;
14 add ch to decoded
 message;
15 UpdateTree(ch);
16 set bitSequence empty;
17 end if
18 end while

The Figure 3 presents the difference between
modified and non-modified method. The phrase
"A friend in need is a friend indeed" was used for the
test. As it may be noticed the weight of the NCW node
is equal to the number of the unique leaf nodes.

Fig. 3. Comparison of full-word AHC trees. Left – two-
purpose NYT node, right – separate NCW and NYT nodes.

4.2 Forgetting

It is a quite frequent fact in real social media application,
when a user makes some mistakes in the text. In the case
of the complete-word Huffman algorithm it would cause
the coding tree to be overgrown and not optimal, since
these mistyped words are used very rarely, but keep the
place in the tree, causing the entropy to be larger. The
same thing may be stated about rare words. Another
problem that may raise is overflowing of dynamically
allocated memory. In the current application
dynamically, allocated arrays are used instead of linked
lists due to their better performance rates. To deal with
these problem, the algorithm of forgetting should be
introduced.

This algorithm is based on the estimation of the
relevance function of the stored words. The relevance
function may be defined as Euclidean norm:

𝑊𝑊𝑊𝑊 = √𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤2 + 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2 (7)

where: agingFactor is the value characterizing how long
cycles ago the word was used last time; weight is the
number of word's appearances in the text, the more the
weight, the more often appears the word in the text.

The forgetting function is based on the algorithm
presented in Listing 4.

Listing 4. Forgetting function.

1 if numberOfStoredWords > thresholdWordNum
2 Sort the array of the leaf nodes basing on WF in

descending order;
3 while numberOfStoredWords > desiredWordNum
4 delete the last word from the leaf nodes array;
5 end while
6 end if

It is reasonable to set thresholdWordNum close to the
max number of stored words and desiredWordNum –
approximately 10-15% less to ensure periodical
"cleaning" of the tree.

The Figure 4 presents the example of forgetting
function operation. The threshold number of words is
equal to 16000 and the desired number of words is
15000.

Fig. 4. Example of forgetting function operation.

5 Experiment and results
The tests were conducted on the data set containing more
than million characters. The data set was composed on
the basis text collected from various sources: news posts,
social network comments and private correspondence.
Use of forgetting function was completely feasible as
many rare words, such as proper names and mistypes
appeared. The results have proven that another
application of complete-word AHC may be composing
a dictionary for dictionary-type coding. Table 1 presents
some frequent words and symbols found in the test texts.

Table 1. The most frequent words and symbols used in the
text.

Word Weight Code
he 937 101001001

have 887 100111001
as 866 100110101
be 866 100110100
are 815 100011101

from 796 100011001
his 793 100011000
has 781 100010101
at 770 100010011

Trump 755 100000000
not 752 1111111110

The next issue that arose during the tests and
comparison of the algorithms was the selection of
features for analysis. The overall sent-to-original bits
ratio has been chosen first. The Figure 5 presents the
comparison of SOBR for the three implemented
methods: separate-character AHC, unmodified complete-
word AHC and modified complete-word AHC.

It may be clearly seen from the picture that even
unmodified complete-word AHC demonstrates better
sent-to-original bit ratio, as it was stated in the chapter
3.3. The modified method allows to decrease the SOBR
even more. The end difference between overall SOBR
values for modified and unmodified methods equals to
2.3 %.

ITM Web of Conferences 15, 01004 (2017)	 DOI: 10.1051/itmconf/20171501004
CMES’17

5

Fig. 5. Comparison of SOBR for the implemented AHC methods.

Another feature that may help to compare the two
complete-words methods is specified sent-to-original
bits ratio (SSOBR). Its value may be computed as first
order divided difference of SOBR:

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 =
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖

(8)

where: NBSM is the number of bits in the sent message;
NBOM is the number of bits in the original message;
i is the number of step.

The value of the denominator corresponds to the step
or the number of bits the specified SOBR is computed
per. In the current research the step was chosen to be
equal to 1 Kbyte. The Figure 6 presents the differences
of SSOBR of unmodified and modified AHC.

Fig. 6. Differences between SSOBR of unmodified and modified
AHC methods.

The Figure 6 shows that the difference between
SSOBR of the both methods tends to be more in the
periods when a lot of new words is added to the tree (up
to 6 percentage point). However, it might have quite low
and even negative values, as in case of absence of new
words unmodified AHC method becomes more optimal.

6 Conclusion
The comparison of single-character AHC and complete
words AHC have been conducted, the research has
proven the following:
- overall sent-to-original bits ratio of complete word
AHC is approximately 12.8 percentage points lower than
separate-words AHC one;

- better SOBR comes at a cost: the algorithm needs more
memory to store the tree, the search of the node in the
tree is slower due to its size, initial sent-to-original bits
ratio is higher than this of separate-character AHC.
The implemented modification allowed to further
improve the SOBR of complete-word AHC. The tests
have shown that:
- sent to original bits ratio is 15.1 percentage points less
compared to separate-character AHC method;
- the proposed modification proved to be more effective
during the periods when large number of words is being
added to the tree, and less when the number of new
words is decreasing. Possible solution, that would be
useful in that case, would be using the modified
algorithm while the tree is being formed and then
deleting the NCW node by the means of the function
used for "forgetting" and using unmodified algorithm.

References
1. D.A. Huffman, Proceedings of I.R.E, pp. 1098–

1101, (1952)
2. G. Nigel N. Martin, Video & Data Recording

Conference, pp. 612-620, (1979)
3. B. Ryabkot, Data Compression Coding Conference

Proceedings, pp 246-252, (2004)
4. J. Van Leeuwen, ICALP, pp. 382-410, (1976)
5. J. Lee, MIT Undergraduate Journal of Mathematics,

pp. 122-130, (2007)
6. J. Duda; K. Tahboub; N.J. Gadgil; E.J. Delp, Picture

Coding Symposium (PCS), pp. 65-69, (2015)
7. https://code.facebook.com/posts/1658392934479273

/smaller-and-faster-data-compression-with-
zstandard/ - last access 07.07.2017

8. J. Alakuijala, Z. Szabadka, Internet Engineering
Task Force (IETF), (2016)

9. J. S. Vitter, Journal of the ACM, 34(4), pp 825–845,
(1987)

10. M.B. Baer, 2013 IEEE International Symposium on
Information Theory Proceedings (ISIT), pp. 1749-
1753, (2013)

11. V.V. Bochkarev, A.V. Shevlyakova, V.D. Solovyev,
Social Evolution & History, Vol.14, number 2, pp.
153-175 (2015)

12. H. Yokoo, 2016 International Symposium on
Information Theory and Its Applications (ISITA),
(2016)

13. http://www.ravi.io/language-word-lengths - last
access 07.07.2017

ITM Web of Conferences 15, 01004 (2017)	 DOI: 10.1051/itmconf/20171501004
CMES’17

6

