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Abstract. A PoissonC-algebra R appears in classical mechanical system and its
quantized algebra appearing in quantum mechanical system is a C[[�]]-algebra
Q = R[[�]] with star product ∗ such that for any a, b ∈ R ⊆ Q,

a ∗ b = ab + B1(a, b)� + B2(a, b)�2 + . . .

subject to
{a, b} = �−1(a ∗ b − b ∗ a)|�=0, · · · (∗∗)

where Bi : R × R −→ R are bilinear products. The given Poisson algebra R
is recovered from its quantized algebra Q by R = Q/�Q with Poisson bracket
(∗∗), which is called its semiclassical limit. But it seems that the star product
in Q is complicate and that Q is difficult to understand at an algebraic point of
view since it is too big. For instance, if λ is a nonzero element of C then �−λ is
a unit in Q and thus a so-called deformation of R, Q/(� − λ)Q, is trivial. Hence
it seems that we need an appropriate F-subalgebra A of Q such that A contains
all generators of Q, � ∈ A and A is understandable at an algebraic point of view,
where F is a subring of C[[�]].
Here we discuss how to find nontrivial deformations from quantized algebras
and the natural map in [6] from a class of infinite deformations onto its semi-
classical limit. The results are illustrated by examples.

1 Motivation and Quantization

1.1 Star product

A commutative C-algebra R is said to be a Poisson algebra if there exists a bilinear product
{−,−} : R × R → R, called a Poisson bracket, such that (R, {−,−}) is a Lie algebra satisfying
Leibniz’s rule {ab, c} = a{b, c}+{a, c}b for all a, b, c ∈ R. A quantization of R is an associative
C[[�]]-algebra R[[�]] equipped with a star product ∗ : R[[�]] × R[[�]] → R[[�]] such that for
all a, b ∈ R,

a ∗ b = ab + B1(a, b)� + B2(a, b)�2 + . . .

subject to
{a, b} = �−1(a ∗ b − b ∗ a)|�=0, (1)
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where Bi : R × R −→ R are bilinear products. Denote by Q = (R[[�]], ∗). We can recover
the Poisson algebra R from its quantization Q. That is, �Q is a nontrivial ideal such that
Q/�Q � R as a commutative C-algebra and the Poisson bracket {−,−} in R is obtained by (1).
But if λ is a nonzero element of C then � − λ is a unit in Q and thus Q/(� − λ)Q is trivial.
Moreover, we do not know what Qλ = { f |�=λ | f ∈ Q} means mathematically. Let us see the
following example.

1.2 Poisson Weyl algebra

The Poisson Weyl algebra is the C-algebra R = C[x, y] with Poisson bracket

{ f , g} = −∂ f
∂x
∂g

∂y
+
∂g

∂x
∂ f
∂y

(2)

for all f , g ∈ R, namely {y, x} = 1.
Define a multiplication on the set R[[�]] of formal power series over R = C[x, y] by

yx = xy + �

and C[[�]] is central in R[[�]]. Then Q = R[[�]] is an associative C[[�]]-algebra and � is
a nonzero, nonunit, non-zero-divisor and central element such that Q/�Q is commutative.
Hence Q/�Q � R is a Poisson C-algebra with Poisson bracket

{ f , g} := �−1( fg − g f )

for all f , g ∈ Q. In particular, {y, x} = 1.
For λ ∈ C, let Qλ be the set of formal elements f |�=λ for all f ∈ Q. For the case λ = 0,

observe that Q0 = R. For 0 � λ ∈ C and f = 1 + �x + �2 + �3 + . . . ∈ Q, we do not know
mathematical meaning of the formal form

f |�=λ = 1 + λx + λ2 + λ3 + . . . ∈ Qλ.

In particular, we should observe that Q/(� − λ)Q = 0, since � − λ is a unit in Q, and thus
Qλ � Q/(� − λ)Q.

The Weyl algebra W is the C-algebra generated by x, y subject to the relation

yx = xy + 1.

Let A be a C[�]-algebra of Q generated by x and y. Then A is a C[�]-algebra generated by
x, y subject to the relation yx − xy = �. Note that the element � ∈ A satisfies the following:

• � is a nonzero, nonunit, non-zero-divisor and central element.

• A/�A is commutative.

• (� − λ)A � A for all 0 � λ ∈ C.

Hence the bilinear product {−,−} on A/�A � R defined by

{ f , g} := �−1( fg − g f ) ( f , g ∈ A)

is well defined and thus A/�A is a Poisson algebra isomorphic to the Poisson Weyl algebra
and for each 0 � λ ∈ C, A/(� − λ)A is the C-algebra generated by x, y subject to the relation
yx = xy + λ, which is isomorphic to the Weyl algebra W. In particular,

Aλ := { f |�=λ | f ∈ A}

makes sense mathematically and is isomorphic to A/(� − λ)A as a C-algebra.
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2 Deformation and semiclassical limit

2.1 Semiclassical limit

Let A be a C-algebra. An element � ∈ A is said to be a regular element if it is a nonzero,
nonunit, non-zero-divisor and central element such that A/�A is commutative.

Let � be a regular element. Then 0 � �A is a proper ideal such that the factor
A := A/�A is a Poisson algebra with Poisson bracket

{a, b} = �−1(ab − ba) (3)

for a, b ∈ A/�A. The Poisson algebra A = A/�A is called a semiclassical limit of A.
Let R and Q be as in §1.1. Then � is a regular element of Q and the semiclassical limit

Q/�Q is isomorphic to R as a Poisson algebra. In §1.2, � is a regular element of A and
the semiclassical limit A/�A is isomorphic to the Poisson Weyl algebra C[x, y] as a Poisson
algebra.

2.2 Deformations

Retain the notations in §2.1. Suppose that there is an element 0 � λ ∈ C such that � − λ is
a nonunit in A. Then (� − λ)A is a proper ideal of A and thus the factor Aλ := A/(� − λ)A
is a nontrivial C-algebra such that its multiplication is induced by that of A. The factor Aλ is
called a deformation of A. For instance, the algebra Aλ in §1.2 is a deformation of the Poisson
Weyl algebra.

An algorithm to obtain a deformation is given as follows. Let F be a subring ofC[[�]] con-
taining C[�] and let A be an F-algebra generated by x1, . . . , xn subject to relations f1, . . . , fr.
For λ ∈ C, assume that fi|�=λ makes sense mathematically for each i = 1, . . . , r. The C-
algebra generated by x1, . . . , xn subject to the relations f1|�=λ, . . . , fr |�=λ, still denoted by Aλ,
is deeply related to A. If g|�=λ makes sense mathematically for all g ∈ A then the evaluation
map

ϕλ : A −→ Aλ, g �→ g|�=λ

is a C-algebra epimorphism and thus Aλ � A/ kerϕλ and the multiplication of Aλ is induced
by that of A. If � is a regular element then Aλ is a deformation of A. An example of this
algorithm is given in §3.

2.3 Weyl algebra

As shown in §1.2, let A be the C[�]-subalgebra of Q = R[[�]] generated by x and y. Then
� ∈ A is a regular element and its semiclassical limit A = A/�A is the Poisson Weyl algebra
R = C[x, y] with the Poisson bracket {y, x} = 1. For each 0 � λ ∈ C, deformation Aλ =
A/(� − λ)A is the C-algebra generated by x and y subject to the relation

yx − xy = λ.

Note that every deformation Aλ is isomorphic to the Weyl algebra W by [4, Proposition 3.4].
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2.4 Another deformation of Poisson Weyl algebra

Here we recall [5, Example 3.8]. Let Q be a C[[�]]-algebra generated by x, y subject to the
relation

yx = (cos �)xy + sin �.

Denote by A the C[�]-subalgebra of Q generated by cos �, sin � and x, y. Consider the com-
position of two natural maps

φ : A −→ Q −→ Q/�Q � R = C[x, y].

Then � is a regular element in A, since � is regular in Q, and A/ ker φ � C[x, y] as a C-algebra.
Give a Poisson bracket in A/ ker φ by (3). Then the Poisson bracket in A/ ker φ is

{y, x} = −(sin �|�=0)xy + cos �|�=0 = 1

and thus A/ ker φ � C[x, y], the Poisson Weyl algebra as a Poisson C-algebra.
For each 0 � λ ∈ C, let Aλ be the C-algebra generated by cos λ, sin λ, x, y subject to the

relation

yx = (cos λ)xy + sin λ.

Then the evaluation map

ϕλ : A −→ Aλ, g �→ g|�=λ

is an algebra ephimorphism and thus A/ kerϕλ � Aλ. In particular, the C-algebra Aπ for the
case λ = π is generated by x, y subject to the relation

yx + xy = 0,

which can be considered as a deformation of the Poisson Weyl algebra.

2.5 Poisson affine 2-space

Let F = C[�, �−1] and let A be the F-algebra generated by x, y subject to the relation

yx = �xy.

Note that � − 1 is a regular element in A and the semiclassical limit A = A/(� − 1) is the
Poisson algebra C[x, y] with Poisson bracket

{y, x} = xy.

Then for each 0,±1 � q ∈ C, the deformation Aq = A/(� − q)A is the C-algebra generated by
x, y subject to the relation

yx = qxy

and thus Aq is the so-called coordinate ring Oq(C2) of affine 2-space.
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3 A natural map from a class of infinite deformations onto its
semiclassical limit

We assume the following conditions (i)-(vii) in [6, Notation 1.1].
(i) Assume that K is an infinite subset of the set C \ {0}.
(ii) Assume that F is a subring of the ring of regular functions on K∪{0} containing C[�].

That is,

C[�] ⊆ F ⊆ { f /g ∈ C(�)| f , g ∈ C[�] such that g|�=λ � 0 ∀λ ∈ K ∪ {0}}. (4)

(iii) Let F〈x1, . . . , xn〉 be the free F-algebra on the set {x1, . . . , xn}. A finite product x of
xi’s (repetitions allowed) is called a monomial. For each i = 1, . . . , r, let fi be an F-linear
combination of monomials

fi =
∑

x
ai

x(�)x, ai
x(�) ∈ F.

Set A = F〈x1, . . . , xn〉/I, where I is the ideal of F〈x1, . . . , xn〉 generated by f1, . . . , fr. That is,
A is the F-algebra generated by x1, . . . , xn subject to the relations

f1, . . . , fr.

(iv) Assume that � is a regular element. Hence there exists the semiclassical limit A/�A.
Denote by ϕ0 the canonical projection

ϕ0 : A −→ A/�A, f �→ f |�=0.

(v) For each λ ∈ K, let Aλ be the C-algebra generated by x1, . . . , xn subject to the relations

f1|�=λ, . . . , fr |�=λ.

Note that ai
x(λ) is a well-defined element of C by (4) and that the evaluation map

ϕλ : A −→ Aλ, f �→ f |�=λ

is an epimorphism of C-algebras. In other words, Aλ is a deformation of the Poisson algebra
A/�A.

(vi) Let
∏
λ∈K Aλ be the product of infinite deformations Aλ and let ϕ be the homomor-

phism of C-algebras defined by

ϕ : A −→
∏
λ∈K

Aλ, ϕ(a) = (ϕλ(a))λ∈K. (5)

Note that ϕ(�) is an invertible element of
∏
λ∈K Aλ since 0 � K.

(vii) Assume that there exists an F-basis {ξi | i ∈ I} of A such that {ϕ0(ξi)|i ∈ I} and
{ϕλ(ξi)|i ∈ I} are C-bases of A/�A and Aλ, respectively, for each λ ∈ K. Hence every element
a ∈ A is expressed uniquely by

a =
∑

i

ai(�)ξi, ai(�) ∈ F

and, for each λ ∈ K,

ϕλ(a) =
∑

i ai(λ)ϕλ(ξi), ϕ0(a) =
∑

i ai(0)ϕ0(ξi).

Note that ai(λ) and ai(0) are well-defined elements of C by (4).
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(viii) Let q̂ be the parameter taking values in K. That is, q̂ is a function defined by

q̂ : K −→ C, q̂(λ) = λ.

(iv) Let Aq̂ be the C-algebra obtained by replacing � in A by q̂ and let̂be the map defined
by

̂ : Aq̂ −→
∏
λ∈K

Aλ, f �→ f̂ = ( f |̂q=λ)λ∈K.

3.1 Theorem [Oh, 2017]

Here we write a natural map from a class of infinite deformations onto its semiclassical limit
in [6, §1]. Set Â = −̂1(ϕ(A)) ⊂ Aq̂, the inverse image of ϕ(A) by the map ̂ . Since ϕ is a
monomorphism of C-algebras by [6, Lemma 1.2], there exists the composition

γ : Â −→ ϕ(A)

⊆
∏
λ∈K

Aλ

 −→ A −→ A/�A, f �→ (ϕ0 ◦ ϕ−1)( f̂ ), (6)

which is an epimorphism of C-algebras such that γ(̂q) = 0 and γ(xi) = ϕ0(xi) for i = 1, . . . , r.

Here we write applications of the map γ in (6).

• One should observe [6, Example 1.6] in which the map γ in (6) induces a homeo-
morphism between the primitive spectrum of the coordinate ring Oq(C2) of quantized affine
2-space and the Poisson primitive spectrum of its semiclassical limit O(C2).

• One should observe [4, Theorem 4.2] in which the map γ in (6) induces a monomor-
phism from the group of automorphisms of Weyl algebra into the group of Poisson automor-
phisms of Poisson Weyl algebra.
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