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1 Introduction

Fuzzy differential equations (FDEs) forms a suitable setting for the mathematical modeling of
real-world problems in which uncertainty or vagueness pervades. A rich collection of results
from the theory of FDEs is contained in the monograph of Lakshmikantham and Mohapatra
[1] and references therein.

The method of fuzzy mapping was initially introduced by Chang and Zadeh [2]. Later,
Dubois and Prade [3, 4] presented a form of elementary fuzzy calculus based on the exten-
sion principle [5]. Puri and Ralescu [6] suggested two definitions for the fuzzy derivative of
fuzzy functions. The first method was based on H-difference notation and was further inves-
tigated by Kaleva [7]. Several approaches were later proposed for FDEs and the existence of
their solutions (e.g. [8, 9]). There are several approaches to the study of fuzzy differential
equations. One popular approach is based on H-differentiability. The approach based on H-
derivative has the disadvantage that it leads to solutions which have an increasing length of
their support.

Bede and Gal [10] solved the above mentioned approach under strongly generalized dif-
ferentiability of fuzzy-number-valued functions. In this case the derivative exists and the so-
lution of FDEs may have decreased the length of the support, but the uniqueness is lost. Other
researchers have proposed several approaches to the solutions of FDEs (e.g. [11–14],[15]).
Almost authors applied the fixed point theorems like the Darbo’s theorem and the classical
Banach fixed point theorem [16], Schauder’s fixed point theorem [17] and the method of suc-
cessive approximations [8],. . . as a tool to prove the existence and uniqueness of the solution
of FDEs. In [13], Lupulescu proved the local existence and uniqueness via the method of suc-
cessive approximations and for global existence and uniqueness via the Banach fixed-point
theorem. Allahviranloo et al. [17] also investigated existence and uniqueness of the solution
of nonlinear fuzzy Volterra integral equations. Using Arzela-Ascoli’s theorem and Schauder’s
fixed point theorem, authors proved thr existence and uniqueness of the solution for this kind

∗e-mail: vuh@buh.edu.vn



2

ITM Web of Conferences 20, 02008 (2018) https://doi.org/10.1051/itmconf/20182002008
ICM 2018

of equations. In [14], using the contractive-like mapping principles, authors discussed the ex-
istence and uniqueness of solution of fuzzy differential equation under generalized Hukuhara
derivative.

In this paper, we prove the existence and uniqueness of solution for fuzzy functional dif-
ferential equation under generalized Hukuhara derivative via the some fixed point theorems,
established in [18].

This paper is organized as follows: In Section 2 we shall review some results the exis-
tence and uniqueness of fixed points for mappings defined in partially ordered sets. Also, we
recall some fundamental results of fuzzy sets, ordering relations over fuzzy sets and fuzzy
distance, which will be necessary to study the existence and uniqueness of solution for the
fuzzy functional differential equation. In Section 3 we study on the existence and uniqueness
of solution for the fuzzy functional differential equation.

2 Preliminaries

In this section, we shall review some results the existence and uniqueness of fixed points for
mappings defined in partially ordered sets. Also, we recall some fundamental results of fuzzy
sets, ordering relations over fuzzy sets and fuzzy distance.

Definition 2.1 (see [18]) An altering distance function is a function Λ : R+ → R+ which
satisfies

(i) Λ is continuous and non-decreasing.
(ii) Λ(t) � 0 if and only if t � 0.

Theorem 2.1 (see [18]) Let (X, ≤) be a be a partially ordered set and suppose that there
exists a metric d in X such that (X, d) is a complete metric space. Let F : X → X be a
monotone non-decreasing mapping such that

Λ(d(F(x), F(y))) ≤ Λ(d(x , y)) − Υ(d(x , y)), for all x ≥ y ,

for some altering distance functions Λ and Υ. Suppose that either F is continuous or X is
such that

if a non-decreasing sequence (xn)n∈N → 0 in X, then xn ≤ x for all n ∈ N.

If there exists x0 ∈ X with x0 ≤ F(x0), then f has a fixed point.

Theorem 2.2 (see [18]) Let (X, ≤) be a be a partially ordered set and suppose that there
exists a metric d in X such that (X, d) is a complete metric space. Let F : X → X be a
monotone non-decreasing mapping such that

Λ(d(F(x), F(y))) ≤ Λ(d(x , y)) − Υ(d(x , y)), for all x ≥ y ,

for some altering distance functions Λ and Υ. Suppose that either f is continuous or X is
such that

if a non-increasing sequence (xn)n∈N → 0 in X, then xn ≥ x for all n ∈ N.

If there exists x0 ∈ X with x0 ≥ F(x0), then F has a fixed point.



3

ITM Web of Conferences 20, 02008 (2018) https://doi.org/10.1051/itmconf/20182002008
ICM 2018

of equations. In [14], using the contractive-like mapping principles, authors discussed the ex-
istence and uniqueness of solution of fuzzy differential equation under generalized Hukuhara
derivative.

In this paper, we prove the existence and uniqueness of solution for fuzzy functional dif-
ferential equation under generalized Hukuhara derivative via the some fixed point theorems,
established in [18].

This paper is organized as follows: In Section 2 we shall review some results the exis-
tence and uniqueness of fixed points for mappings defined in partially ordered sets. Also, we
recall some fundamental results of fuzzy sets, ordering relations over fuzzy sets and fuzzy
distance, which will be necessary to study the existence and uniqueness of solution for the
fuzzy functional differential equation. In Section 3 we study on the existence and uniqueness
of solution for the fuzzy functional differential equation.

2 Preliminaries

In this section, we shall review some results the existence and uniqueness of fixed points for
mappings defined in partially ordered sets. Also, we recall some fundamental results of fuzzy
sets, ordering relations over fuzzy sets and fuzzy distance.

Definition 2.1 (see [18]) An altering distance function is a function Λ : R+ → R+ which
satisfies

(i) Λ is continuous and non-decreasing.
(ii) Λ(t) � 0 if and only if t � 0.

Theorem 2.1 (see [18]) Let (X, ≤) be a be a partially ordered set and suppose that there
exists a metric d in X such that (X, d) is a complete metric space. Let F : X → X be a
monotone non-decreasing mapping such that

Λ(d(F(x), F(y))) ≤ Λ(d(x , y)) − Υ(d(x , y)), for all x ≥ y ,

for some altering distance functions Λ and Υ. Suppose that either F is continuous or X is
such that

if a non-decreasing sequence (xn)n∈N → 0 in X, then xn ≤ x for all n ∈ N.

If there exists x0 ∈ X with x0 ≤ F(x0), then f has a fixed point.

Theorem 2.2 (see [18]) Let (X, ≤) be a be a partially ordered set and suppose that there
exists a metric d in X such that (X, d) is a complete metric space. Let F : X → X be a
monotone non-decreasing mapping such that

Λ(d(F(x), F(y))) ≤ Λ(d(x , y)) − Υ(d(x , y)), for all x ≥ y ,

for some altering distance functions Λ and Υ. Suppose that either f is continuous or X is
such that

if a non-increasing sequence (xn)n∈N → 0 in X, then xn ≥ x for all n ∈ N.

If there exists x0 ∈ X with x0 ≥ F(x0), then F has a fixed point.

Let Kc(Rd) denote the collection of all nonempty compact and convex subsets of Rd .
The addition and scalar multiplication in Kc(Rd), we define as usual, i.e. A, B ∈ Kc(Rd)
and λ ∈ R, then we have A + B � {a + b | a ∈ A, b ∈ B}, λA � {λa | a ∈ A}. The
Hausdorff metric dH in Kc(Rd) is defined as follows

dH(A, B) � max{sup
a∈A

inf
b∈B

‖a − b‖Rd , sup
b∈B

inf
a∈A

‖a − b‖Rd },

where A, B ∈ Kc(Rd). It is known that (Kc(Rd), dH) is a complete metric space.
Denote Ed � {u : Rd → [0, 1] such that x(z) satisfies (i)-(iv) stated below}

(i) x is normal, i.e, there exists an z0 ∈ Rd such that x(z0) � 1;

(ii) x is fuzzy convex, that is, for 0 ≤ λ ≤ 1, x(λz1 + (1 − λ)z2) ≥ min{x(z1), x(z2)}, for
any z1 , z2 ∈ Rd ;

(iii) x is upper semicontinuous;

(iv) [x]0 � cl{z ∈ Rd : x(z) > 0} is compact.

Then Ed is called the space of fuzzy sets.
For α ∈ (0, 1], denote [x]α � {z ∈ Rd | x(z) ≥ α}. We will call this set an α - cut ( α -

level set) of the fuzzy set x. For x ∈ Ed one has that [x]α ∈ Kc(Rd) for every α ∈ [0, 1].
The supremum on Ed is defined by

d∞(x1 , x2) � sup
α∈[0,1]

dH([x1]α, [x2]α)

for every x1 , x2 ∈ Ed , and (Ed , d∞) is a complete metric space.
Define D : Ed × Ed → R+ by the expression

D(x , y) � sup
t∈[a ,b]

d∞(x1(t), x2(t)).

It is easy to see that D is a metric in Ed . In fact, (Ed ,D) is a complete metric space.
For every x , y , z ∈ Ed and λ ∈ R+, we have

D(x + z , y + z) � D(x , y),
D(λx , λy) � λD(x , y),
D(x , y) ≤ D(x , z) + D(y , z).

Definition 2.2 ([10]) Let x : (a , b) → Ed , t ∈ [a , b]. We say that x is differentiable at t, if
there exists x′(t) ∈ Ed such that

(i)for all h > 0 sufficiently small, there exist x (t + h) � x(t), x(t) � x(t − h) and the limits

lim
h→0+

x (t + h) � x(t)
h

� lim
h→0+

x (t) � x(t − h)
h

� x′(t)

or

(ii)for all h > 0 sufficiently small, there exist x (t) � x(t + h), x(t − h) � x(t) and the limits

lim
h→0+

x (t) � x(t + h)
−h

� lim
h→0+

x (t − h) � x(t)
−h

� x′(t).
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In the sequel, we define the following partial orderings ≤ and � in the space Ed and E1:

x , y ∈ Ed , x � y ⇐⇒ [x]α ⊆ [y]α, for all α ∈ [0, 1],

and

x ≤ y �⇒ x + z ≤ y + z , for x , y , z ∈ E1 ,

x � y �⇒ x + z � y + z , for x , y , z ∈ Ed ,

and for fuzzy functions,

f ≤ � �⇒
∫ t

0
f (s)ds ≤

∫ t

0
�(s)ds , for t ∈ [0, a], f , � ∈ C([0, a], E1),

f � � �⇒
∫ t

0
f (s)ds �

∫ t

0
�(s)ds , for t ∈ [0, a], f , � ∈ C([0, a], Ed).

3 Main result

For a given σ > 0, we denote by Cσ the space C([−σ, 0], Ed). Also, we denote by

Dσ(x , y) � sup
t∈[−σ,0]

d∞(x(t), y(t))

the metric on the space Cσ. Let x(·) ∈ C([−σ,∞), Ed). Then, for each t ∈ [0,∞) we denote
by xt the element of Cσ defined by xt(s) � x(t + s), s ∈ [−σ, 0].

In this section, we consider the fuzzy functional differential equation under generalized
Hukuhara derivative as follows:

{
u′(t) � f (t , ut), t ∈ [0, a],
u(t) � ϕ(t), t ∈ [−σ, 0]. (1)

Theorem 3.1 (see [12]) A fuzzy mapping u : [−σ, a] → Ed is a solution to the problem
(1) on [−σ, a] if and only if u is a continuous fuzzy mapping and it satisfies to one of the
following fuzzy integral equations:

(i) If u is (i)-differentiable on [0, a], then

u(t) �
{
ϕ(t), for t ∈ [−σ, 0],
ϕ(0) +

∫ t
0 f (s , us)ds , for t ∈ [0, a],

(2)

(ii) If u is (ii)-differentiable on [0, a], then

u(t) �
{
ϕ(t), for t ∈ [−σ, 0],
ϕ(0) � (−1)

∫ t
0 f (s , us)ds , for t ∈ [0, a].

(3)

Definition 3.1 (see [? ]) A lower solution for the problem (1) is a function µ ∈
C([0, a], Ed) ∩ C1([−σ, a], Ed) such that

µ′(t) � f (t , ut), t ∈ [0, a], µ0 � ϕ.

A upper solution for the problem (1) is a function µ ∈ C([0, a], Ed) ∩ C1([−σ, a], Ed) such
that

µ′(t) � f (t , ut), t ∈ [0, a], µ0 � ϕ.
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(or a lower (ii)-solution), respectively. If µ is (i)-differentiable (or (ii)-differentiable), then µ
is said an upper (i)-solution (or (ii)-differentiable), respectively.

Theorem 3.2 Suppose that there exists µ ∈ C([0, a], Ed) ∩ C1([−σ, a], Ed) a lower (i)-
solution of the problem (1). Let f : [0, a] × Cσ → Ed be continuous such that

(i) f is non-decreasing in the second variable, i.e., if ϕ � φ then f (t , ϕ) � f (t , φ);
(ii) f is weakly contractive for comparable elements, i.e., for some altering distance

functions Λ and Υ, it holds

Λ
(
d∞( f (t , ϕ), f (t , φ))

)
≤ Λ

(
Dσ(ϕ, φ)

)
− Υ

(
Dσ(ϕ, φ)

)
, if ϕ � φ,

for every t ∈ [0, a] and ϕ, φ ∈ Cσ.
Then, the problem (1) has a unique (i)-solution on [−σ, a].

Proof. We consider the space C([−σ, a], Ed) equipped with the complete metric

Dρ(u , v) � sup
t∈[−σ,a]

{
d∞(u(t), v(t)) e−ρt} , u , v ∈ C([−σ, a], Ed), for ρ > 0.

It is easy to see that this metric is equivalent to the metric D(u , v), because

D(u , v)e−ρa ≤ Dρ(u , v) ≤ D(u , v) (4)

for all u , v ∈ C([−σ, a], Ed). Moreover, (C([−σ, a], Ed),Dσ) is a complete metric space.
Now, let the operator T : C([−σ, a], Ed) → C([−σ, a], Ed) be defined by

[T u](t) �
{
ϕ(t), for t ∈ [−σ, 0],
ϕ(0) +

∫ t
0 f (s , us)ds , for t ∈ [0, a].

(5)

If there exists u ∈ C([−σ, a], Ed) is a fixed point of T , then u ∈ C1([0, a], Ed) is a solution
of the problem (1) and conversely.

In order to prove the theorem, we shall show the conditions of Theorem (2.1) are satisfied.
First, we prove that the operator T is a non-decreasing and continuous. Indeed, the continuity
is trivial and take u � v on intervals [0, a] and for every t ∈ [−σ, 0], we have

[T u](t) � [T v](t) � ϕ(t).

For every t ∈ [0, a], we obtain

[T u](t) � ϕ(0) +
∫ t

0
f (s , us)ds � ϕ(0) +

∫ t

0
f (s , vs)ds � [T v](t).

From the assumption (ii), we have

Λ
(
d∞( f (t , u), f (t , v))

)
≤ Λ

(
Dσ(u , v)

)
, if u , v ∈ Cσ and u � v. (6)

Next, we will prove that the inequality (6) holds, for all u � v. Suppose that

Dσ(u , v) < d∞
(

f (t , u), f (t , v)
)
, for all u � v

and Λ is an altering distance function. Then we have

Λ
(
Dσ(u , v)

)
≤ Λ

(
d∞

(
f (t , u), f (t , v)

) )
. (7)
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By the inequality (6) and (7), we derive that

Λ
(
Dσ(u , v)

)
� Λ

(
d∞

(
f (t , u), f (t , v)

) )
, for all u � v. (8)

Combine assumption (ii) and (8), it follows that 0 ≤ −Υ
(
Dσ(u , v)

)
, for all u �

v, and therefore, Υ
(
Dσ(u , v)

)
� 0. This implies Dσ(u , v) � 0. Thus, we have

Λ
(
d∞

(
f (t , u), f (t , v)

) )
� Υ

(
Dσ(u , v)

)
� 0. Since Υ is an altering distance function, we

derive that d∞
(

f (t , u), f (t , v)
)
� 0. This contradict the assumption above, that is, for all

u � v we have

d∞
(

f (t , u), f (t , v)
)
≤ Dσ(u , v). (9)

For all u � v, if t ∈ [−σ, 0], then d∞([T u](t), [T v](t)) � d∞(ϕ(t), ϕ(t)) � 0, and if
t ∈ [0, a], we get

d∞
(
[T u](t), [T v](t)

)
� d∞

(
ϕ(0) +

∫ t

0
f (s , us)ds , ϕ(0) +

∫ t

0
f (s , vs)ds

)

≤
∫ t

0
d∞

(
f (s , us), f (s , vs)

)
ds ≤

∫ t

0
Dσ(u , v)ds

≤
∫ t

0
sup

r∈[−σ,0]
d∞

(
u(r + s), v(r + s)

)
ds ,

then

Dρ
(
T u ,T v

)
� sup

t∈[−σ,a]

{
d∞([T u](t), [T v](t)) e−ρt}

≤ sup
t∈[−σ,a]

{ ∫ t

0
sup

r∈[−σ,0]
d∞

(
u(r + s), v(r + s)

)
ds e−ρt

}

� sup
t∈[−σ,a]

{ ∫ t

0
sup

r∈[−σ,0]
d∞

(
u(r + s), v(r + s)

)
e−ρ(r+s) eρ(r+s)ds e−ρt

}

≤ sup
t∈[−σ,a]

{ ∫ t

0
sup

r∈[−σ,0]
eρ(r+s)ds e−ρt

}
Dρ(u , v)

� sup
t∈[−σ,a]

{ ∫ t

0
eρs ds e−ρt

}
Dρ(u , v)

� sup
t∈[−σ,a]

{
1 − e−ρt

ρ

}
Dρ(u , v) �

1 − e−ρa

ρ
Dρ(u , v). (10)

Since Λ is an altering distance function and by the inequality (10), we infer that

Λ
(
Dρ

(
T u ,T v

) )
≤ Λ

(
1 − e−ρa

ρ
Dρ(u , v)

)

� Λ
(
Dρ(u , v)

)
−
(
Λ
(
Dρ(u , v)

)
−Λ

(
1 − e−ρa

ρ
Dρ(u , v)

))
.

Therefore, if Υ(t) � Λ(t) −Λ
(

1 − e−ρa

ρ
t
)
, it follows that

Λ
(
Dρ

(
T u ,T v

) )
≤ Λ

(
Dρ(ϕ, φ)

)
− Υ

(
Dρ(ϕ, φ)

)
, for all u � v.
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eρ(r+s)ds e−ρt

}
Dρ(u , v)

� sup
t∈[−σ,a]

{ ∫ t

0
eρs ds e−ρt

}
Dρ(u , v)

� sup
t∈[−σ,a]

{
1 − e−ρt

ρ

}
Dρ(u , v) �

1 − e−ρa

ρ
Dρ(u , v). (10)

Since Λ is an altering distance function and by the inequality (10), we infer that

Λ
(
Dρ

(
T u ,T v

) )
≤ Λ

(
1 − e−ρa

ρ
Dρ(u , v)

)

� Λ
(
Dρ(u , v)

)
−
(
Λ
(
Dρ(u , v)

)
−Λ

(
1 − e−ρa

ρ
Dρ(u , v)

))
.

Therefore, if Υ(t) � Λ(t) −Λ
(

1 − e−ρa

ρ
t
)
, it follows that

Λ
(
Dρ

(
T u ,T v

) )
≤ Λ

(
Dρ(ϕ, φ)

)
− Υ

(
Dρ(ϕ, φ)

)
, for all u � v.

From 4 and (8), we obtain

Λ
(
d∞

(
f (t , u), f (t , v)

) )
≤ Λ

(
Dσ(ϕ, φ)

)
− Υ

(
Dσ(ϕ, φ)

)
, for all u � v.

Finally, using the existence of the lower (i)-solution and Theorem 2.1, we shall prove that
µ is such that µ � T µ. Indeed, if t ∈ [−σ, 0], µ0 � ϕ then µ(t) � ϕ(t) � [T µ](t) and for
t ∈ [0, a],

µ(t) � µ(0) +
∫ t

0
µ′(s)ds � ϕ(0) +

∫ t

0
f (s , µs)ds � [T µ](t).

Since every pair of functions in C([−σ, a], Ed) has an upper bound, the operator T has a
unique fixed point u ∈ C([−σ, a], Ed) and u is the unique solution of the problem (1) on
[−σ, a].

Theorem 3.3 Replacing the existence of a lower (i)-solution of the problem (1) by the exis-
tence of a upper (i)-solution of the problem (1), the conclusion of Theorem 3.2 is still valid.

Proof. The proof of Theorem 3.3 is similarly the proof Theorem 3.2.

Theorem 3.4 Suppose that there exists µ ∈ C([0, a], Ed) ∩ C1([−σ, a], Ed) a lower (ii)-
solution of the problem (1). Let f : [0, a] × Cσ → Ed be continuous such that

(i) for all α ∈ [0, 1] and ϕ ∈ Cσ,

diam([ϕ(0)]α) ≥ diam
( [ ∫ t

t0

f (s , us)ds
]α)

;

(ii) f is non-decreasing in the second variable, i.e., if ϕ � φ then f (t , ϕ) � f (t , φ);
(iii) f is weakly contractive for comparable elements, i.e., for some altering distance

functions Λ and Υ, it holds

Λ
(
d∞( f (t , ϕ), f (t , φ))

)
≤ Λ

(
Dσ(ϕ, φ)

)
− Υ

(
Dσ(ϕ, φ)

)
, if ϕ � φ,

for every t ∈ [0, a] and ϕ, φ ∈ Cσ.
Then, the problem (1) has a unique (ii)-solution on [−σ, a].

Proof. By the condition (i), we imply that the existence of Hukuhara differences
ϕ(0) + (−1)

∫ t
0 f (s , us)ds is guaranteed. Now, let the operator A : C([−σ, a], Ed) →

C([−σ, a], Ed) be defined by

[A u](t) �
{
ϕ(t), for t ∈ [−σ, 0],
ϕ(0) � (−1)

∫ t
0 f (s , us)ds , for t ∈ [0, a].

(11)

Notice that if there exists u ∈ C([−σ, a], Ed) is a fixed point of A , then u ∈ C1([0, a], Ed)
is a solution of the problem (1) and conversely.

Similarly to Theorem 3.2, we shall show the conditions of Theorem (2.1) are satisfied.
For all us � vs on [−σ, a], we have

[A u](t) � [A v](t) � ϕ(t) for t ∈ [−σ, 0]
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and

[A u](t) � ϕ(0) � (−1)
∫ t

0
f (s , us)ds � ϕ(0) � (−1)

∫ t

0
f (s , vs)ds � [A v](t), for t ∈ [0, a].

Therefore, A has the operator non-decreasing.
For all u � v, if t ∈ [−σ, 0] then d∞([A u](t), [A v](t)) � d∞(ϕ(t), ϕ(t)) � 0 and if

t ∈ [0, a], then we get

d∞([A u](t), [A v](t)) � d∞

(
ϕ(0) � (−1)

∫ t

0
f (s , us)ds , ϕ(0) � (−1)

∫ t

0
f (s , vs)ds

)

≤
∫ t

0
d∞

(
f (s , us), f (s , vs)

)
ds ≤

∫ t

0
Dσ(us , vs)ds

≤
∫ t

0
sup

r∈[−σ,0]
d∞

(
u(r + s), v(r + s)

)
ds .

By similar calculations as (10), we have.

Dρ
(
T u ,T v

)
� sup

t∈[−σ,a]

{
d∞([T u](t), [T v](t)) e−ρt}

≤ sup
t∈[−σ,a]

{
1 − e−ρt

ρ

}
Dρ(u , v) �

1 − e−ρa

ρ
Dρ(u , v). (12)

Therefore, if Λ is some increasing altering distance function, it holds

Λ
(
Dρ

(
T u ,T v

) )
≤ Λ

(
1 − e−ρa

ρ
Dρ(u , v)

)

� Λ
(
Dρ(u , v)

)
−
(
Λ
(
Dρ(u , v)

)
−Λ

(
1 − e−ρa

ρ
Dρ(u , v)

))
.

Then, from 4 and (8), we derive that

Λ
(
d∞

(
f (t , u), f (t , v)

) )
≤ Λ

(
Dσ(ϕ, φ)

)
− Υ

(
Dσ(ϕ, φ)

)
, for all u � v.

where Υ(t) � Λ(t) −Λ
(

1 − e−ρa

ρ
t
)
.

Finally, using the existence of the lower (ii)-solution and Theorem 3.1, we shall prove
that µ is such that µ � A µ. Indeed, if t ∈ [−σ, 0], µ0 � ϕ then µ(t) � ϕ(t) � [A µ](t)
and for t ∈ [0, a],

µ(t) � µ(0) � (−1)
∫ t

0
µ′(s)ds � ϕ(0) � (−1)

∫ t

0
f (s , µs)ds � [A µ](t).

Thus µ(t) � [A µ](t). We see that the operator A verifies all conditions of Theorem 2.1,
that is, A has a fixed point in C([−σ, Ed]). Given that C([−σ, Ed]) verifies that every pair of
elements of C([−σ, Ed]) has an upper bound, the operator A has a unique fixed point.

Theorem 3.5 Replacing the existence of a lower (ii)-solution of the problem (11) by the
existence of a upper (ii)-solution of the problem (11), the conclusion of Theorem 3.5 is still
valid.
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and

[A u](t) � ϕ(0) � (−1)
∫ t

0
f (s , us)ds � ϕ(0) � (−1)

∫ t

0
f (s , vs)ds � [A v](t), for t ∈ [0, a].

Therefore, A has the operator non-decreasing.
For all u � v, if t ∈ [−σ, 0] then d∞([A u](t), [A v](t)) � d∞(ϕ(t), ϕ(t)) � 0 and if

t ∈ [0, a], then we get

d∞([A u](t), [A v](t)) � d∞

(
ϕ(0) � (−1)

∫ t

0
f (s , us)ds , ϕ(0) � (−1)

∫ t

0
f (s , vs)ds

)

≤
∫ t

0
d∞

(
f (s , us), f (s , vs)

)
ds ≤

∫ t

0
Dσ(us , vs)ds

≤
∫ t

0
sup

r∈[−σ,0]
d∞

(
u(r + s), v(r + s)

)
ds .

By similar calculations as (10), we have.

Dρ
(
T u ,T v

)
� sup

t∈[−σ,a]

{
d∞([T u](t), [T v](t)) e−ρt}

≤ sup
t∈[−σ,a]

{
1 − e−ρt

ρ

}
Dρ(u , v) �

1 − e−ρa

ρ
Dρ(u , v). (12)

Therefore, if Λ is some increasing altering distance function, it holds

Λ
(
Dρ

(
T u ,T v

) )
≤ Λ

(
1 − e−ρa

ρ
Dρ(u , v)

)

� Λ
(
Dρ(u , v)

)
−
(
Λ
(
Dρ(u , v)

)
−Λ

(
1 − e−ρa

ρ
Dρ(u , v)

))
.

Then, from 4 and (8), we derive that

Λ
(
d∞

(
f (t , u), f (t , v)

) )
≤ Λ

(
Dσ(ϕ, φ)

)
− Υ

(
Dσ(ϕ, φ)

)
, for all u � v.

where Υ(t) � Λ(t) −Λ
(

1 − e−ρa

ρ
t
)
.

Finally, using the existence of the lower (ii)-solution and Theorem 3.1, we shall prove
that µ is such that µ � A µ. Indeed, if t ∈ [−σ, 0], µ0 � ϕ then µ(t) � ϕ(t) � [A µ](t)
and for t ∈ [0, a],

µ(t) � µ(0) � (−1)
∫ t

0
µ′(s)ds � ϕ(0) � (−1)

∫ t

0
f (s , µs)ds � [A µ](t).

Thus µ(t) � [A µ](t). We see that the operator A verifies all conditions of Theorem 2.1,
that is, A has a fixed point in C([−σ, Ed]). Given that C([−σ, Ed]) verifies that every pair of
elements of C([−σ, Ed]) has an upper bound, the operator A has a unique fixed point.

Theorem 3.5 Replacing the existence of a lower (ii)-solution of the problem (11) by the
existence of a upper (ii)-solution of the problem (11), the conclusion of Theorem 3.5 is still
valid.

Proof. The proof of Theorem 3.5 is similarly the proof Theorem 3.4.

Example 3.6 Let us consider a fuzzy time-delay Malthusian model:
{

u′(t) � λu(t − 1), t ≥ 0,
u(t) � u0 , −1 ≤ t ≤ 0,

(13)

where u(t) is the population at time t, u0 � (−1, 0, 1) and λ > 0.

In [12, 13], it is shown that the problem (13) has a unique solution on [−1,∞).
But this example, we want to prove that the conditions of Theorem 3.2 (or Theorem 3.2)

are satisfied.
Now, we check the existence of a lower (i)-solution for the problem (13). Let f : [0,∞)×

C([−1, 0], E1) → E1 be defined by f (t , u) � λu(t − 1) is a continuous and non-increasing
in the second variable, that is,

f (t , u) � λu(t − 1) � f (t , v) � λv(t − 1), if u � v , for t ∈ [0,∞). (14)

Let the function Λ,Υ : R+ → R+ be defined by Λ(t) � t and Υ(t) � (1 − λ)t. It is easy
to see that Λ,Υ satisfy the conditions of Definition 2.1, that is, Λ and Υ are some altering
distance function.

By a direct calculation, we get

d∞( f (t , u), f (t , v)) � λd∞(u(t − 1), v(t − 1))
� λ sup

α∈[0,1]
max

{��ul
α(t − 1) − vl

α(t − 1)
��, ��ur

α(t − 1) − vr
α(t − 1)

��}

� λ sup
α∈[0,1]

max
{

sup
s∈[−1,0]

��ul
α(s) − vl

α(s)
��, sup

s∈[−1,0]

��ur
α(s) − vr

α(s)
��}

� λ sup
α∈[0,1]

{
sup

s∈[−1,0]
dH

(
[u(s)]α, [v(s)]α

)}

≤ λ sup
s∈[−1,0]

d∞(u(s), v(s)) � λDσ(u , v). (15)

Since Λ is an altering distance function and from (15), we infer that

Λ
(
d∞( f (t , u), f (t , v))

)
≤ Λ

(
λDσ(u , v)

)

≤ Λ
(
Dσ(u , v)

)
−
(
Λ
(
Dσ(u , v)

)
−Λ

(
λDσ(u , v)

) )

≤ Λ
(
Dσ(u , v)

)
− Υ

(
Dσ(u , v)

)
, (16)

where Υ(t) � (1 − λ)t.
By using Theorem 3.2, the existence of a lower (i)-solution for the problem provides the

existence of a unique solution on [−1,∞).
It is easy to see that the conditions of Theorem (3.3) are satisfied, that is, the problem (13)

has a unique (ii)-solution on [−1,∞).

Example 3.7 Consider the fuzzy functional differential equation that describe the fuzzy
Ehrlich ascities tumor model{

u′(t) � ru(t − 1)
(
1 − u(t − 1)

)
, t ≥ 0,

u(t) � u0 , t ∈ [−1, 0], (17)

where u0 � (−1, 0, 1) and r ∈ [0, 2).
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Similar to example above, we can easily see that all the conditions of Theorem (3.2) are
verified and we can conclude the existence and uniqueness of solution of problem (17) by
means of Theorem (3.2), though the unique solution for problem (17).

4 Conclusions

In this paper, we studied the new existence and uniqueness of solution for fuzzy functional
differential equation under generalized Hukuhara derivative and by using some recent results
of fixed point of weakly contractive mappings on partially ordered sets, established in [18].
We obtain a generalization of these results, if we replace the condition (h1) of Theorem 4.1
in [13] by the following conditionΛ

(
d∞( f (t , ϕ), f (t , φ))

)
≤ Λ

(
Dσ(ϕ, φ)

)
−Υ

(
Dσ(ϕ, φ)

)
,

where Λ,Υ are some altering distance functions.

References

[1] V. Lakshmikantham, R.N. Mohapatra, Theory of Fuzzy Differential Equations and In-
clusions (Taylor and Francis Publishers, London, 2003), ISBN 9780415300735

[2] S.S.L. Chang, L.A. Zadeh (World Scientific Publishing Co., Inc., River Edge, NJ,
USA, 1996), chap. On Fuzzy Mapping and Control, pp. 180–184, ISBN 981-02-2422-2,
http://dl.acm.org/citation.cfm?id=234347.234388

[3] D. Dubois, H. Prade, Fuzzy Sets and Systems 8, 1 (1982)
[4] D. Dubois, H. Prade, Fuzzy Sets and Systems 8, 105 (1982)
[5] L. Zadeh, Information and Control 8, 338 (1965)
[6] M.L. Puri, D.A. Ralescu, Journal of Mathematical Analysis and Applications 91, 552

(1983)
[7] O. Kaleva, Fuzzy Sets and Systems 24, 301 (1987), fuzzy Numbers
[8] S. Song, C. Wu, Fuzzy Sets and Systems 110, 55 (2000)
[9] C. Wu, S. Song, E. Lee, Journal of Mathematical Analysis and Applications 202, 629

(1996)
[10] B. Bede, S.G. Gal, Fuzzy Sets Syst. 151, 581 (2005)
[11] S.S. Behzadi, T. Allahviranloo, Iranian Journal of Fuzzy Systems 13, 71 (2016)
[12] A. Khastan, J. Nieto, R. Rodríguez-López, Information Sciences 275, 145 (2014)
[13] V. Lupulescu, Fuzzy Sets and Systems 160, 1547 (2009)
[14] E.J. Villamizar-Roa, V. Angulo-Castillo, Y. Chalco-Cano, Fuzzy Sets and Systems 265,

24 (2015)
[15] O.S. Fard, D.F.M. Torres, M.R. Zadeh, Applicable Analysis and Discrete Mathematics

pp. 152–167 (2016)
[16] P. Subrahmanyam, S. Sudarsanam, Fuzzy Sets and Systems 81, 237 (1996)
[17] T. Allahviranloo, P. Salehi, M. Nejatiyan, Iranian Journal of Fuzzy Systems 12, 75

(2015)
[18] J. Harjani, K. Sadarangani, Nonlinear Analysis: Theory, Methods & Applications 72,

1188 (2010)


