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Abstract. This communication focuses on an inverse problem of the physical
phenomena which can be described by the partial differential equation. Es-
pecially, an unknown parameter identification process of the heat conduction
problem in the thermal domain related to mobile heating source tracking is in-
vestigated. To do this, an iterative minimization of a quadratic cost-function
based on the conjugate gradient method is widespread since this algorithm pro-
vides regularization properties for an estimation of the trajectory of a mobile
heating source. Furthermore, another identification method is proposed by us-
ing the conjugate gradient method combined with the sensitivity problem of the
sensor network. A quasi-online adaptation of this numerical method aims to
identify the unknown characteristics with a small delay after the required tem-
perature measurements by selecting the better sensors locations, this could also
reduce the computational time. This approach offers the opportunity to move
mobile sensors in order to increase the overall sensitivity and thus to improve
the quality of the identification which is a shorter delay and better accuracy.

Keywords: heat equation, inverse problem, modeling, parametric identification, partial dif-
ferential equation.

1 Introduction

In engineering science, it is necessary to model many physical phenomena or technical system
which can be modeled by partial differential equation (PDE) in order to predict and to act on
their effect. However, to determine the value of the parameters is not easy when building
their mathematical models. To do this, an inverse problem can be formulated as follows: find
the unknown parameters such that the simulated output provided by the resolution of direct
problem are closed to the measurements provided by sensors. It is usual to investigate such
inversion as a minimization problem where a quadratic cost-function has to be minimized.
Especially, we use the heat conduction problem which is also described by a parabolic partial
differential equation such as an example. The goal aims to identify the trajectory of the
mobile heating source. It is well known that inverse heat conduction problems are ill-posed
in Hadamard sense and that it is still possible to find accurate solutions using regularization
techniques [1]. Iterative minimization based on conjugate gradient method (CGM) is known
as a stable algorithm for this case. Stabilizing effect during the iterative minimization is
highlighted in [2] and it is shown that this method acts like a sequential filtering mechanism
capable of rejecting random perturbations in measurements during the identification process.
∗e-mail: tranthanhphong@tgu.edu.vn
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In this research context, the quasi online identification was proposed and developed in
[3], it is based on successive time intervals for identification which slide on the total time
horizon in order to take into account the continuous updating of observations. The disadvan-
tage was necessary to use all of sensors. A sensors positioning method is investigated in order
to improve it. To do this, several mobile pointwise sensors are considered. Thus sensitivity
functions are determined throughout the process and are analysed in order to determine the
better position for each sensor. Such methodology has been developed in [4] for a set of fixed
sensor in order to select a subset of relevant sensors among a large number of candidate sen-
sors. The main problem of mobile sensors positioning is to avoid observations redundancy
and to deal with the constraints and conflicts related to the trajectories. In order to illustrate
the proposed approach a demonstrator is built in the laboratory aided by the simulated exper-
imentation. A numerical software dedicated to quasi online identification based on conjugate
gradient method is implemented. Adaptation to sensors positioning is discussed considering
this validated numerical tool.

The content of this article consists of four following parts. In the next part, physical sys-
tem context and mathematical model are briefly described. Thus direct problem is stated. In
the third part, the methodology of inverse problem (identification of the trajectory) is pro-
posed and quasi online identification method using the sensitivity problem of sensor network
is presented. Some numerical results of this method is considered in order to discuss about
sensors positioning in the fourth section. The concluding remarks are presented in the last
section.

2 Problematic

Let us consider that a small mobile heating source is moving on a plane surface. The main
objective is to determine the source trajectory considering temperatures measurements pro-
vided by five mobile sensors. In the following several elements of the experimental device
are described. Then partial differential equations system is proposed in order to provide an
efficient numerical predictive tool.

A mobile heating source is moving on a square plate. In this study, the hypothesis of a 2D
geometry was considered in order to reduce the computing times. This assumption is valid
only if heat transfers in the plate thickness are neglected. Then, a thin metallic plate (with a
high thermal conductivity) is considered. Aluminum plate was chosen (square plate with a
size equal to 3m) and horizontally set on a support providing insulation.

2.1 Physical system context

To construct an experimental model for verifying the method proposed in this paper, we
assume that there is one heat source S moving on the surface of a square aluminum sheet
Ω ∈ R2 of lateral dimension L and thickness e described as shown in Figure 1. The boundary
of the studying domain is denoted by ∂Ω ∈ R. The variable space of the system (x, y) ∈
Ω =

]
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2
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L
2

[
×
]
−L

2
,+
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2

[
are measured in meter and the variable time t ∈ T =

[
0, t f

]

is measured in second. This metal sheet is heated by a heat source having the thermal flux
density functions φ(t) in Wm−2 which are assumed to be a homogeneous disk D with center
I (x(t), y(t)) and radius r. The temperature distribution function of a metal plate is θ(x, y, t) in
Kelvin is a continuous function in space and time. Assuming that the values of parameters
of a system used to construct the experimental model Ψ (Ω, ρ, c, λ, h, φ(t), I(t), θ0) are known
and listed in Table 1 with the unit of measure of the quantities in the unit of measure in the
International System of Units (SI).
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In particular, the metal plate is heated by a heat source traveling on its surface (Cartesian
coordinate system xOy) to allow us to investigate the heat transfer on the surface and inside
the plate. At the same time, the heat density densities of the sources are given by the function
φ (t) = φmax exp

(
−(t − α)2/β2

)
in (W/m2) with α = 600 and β = 175. The expression of the

total thermal power density function of source Φ (x, y, z; t) is used to heat the experimental
metal plate as follows:

Φ (x, y, z; t) =


φ(t) i f (x, y, z) ∈ D (I(t), r)

0 otherwise
(1)

This expression can be represented continuously and differentially as a function of the
component density functions in time variables and in spatial coordinates as follows:

Φ (x, y, z, t) =
φ(t)
π

arccotan
(
η

√
(x − x(t))2 + (y − y(t))2 − r

)
(2)

The regularization parameter η ∈ R+ has been chosen to describe with precision the heat
flux discontinuity. The time interval

[
0, t f

]
can be divided into Nt segments and defined using

piecewise continuous linear functions:
[
0, t f

]
=

Nt−1
∪
i=0

[ti, ti+1] with ti = τi and a discretization

step defined by τ = t f /Nt. In order to avoid losing of generality, the orbital equation of all
positioning of heat source I (x(t), y(t), z(t)) were re-established as discrete functions linearly
and rewritten using basic triangle function si(t) with i = 0, 1, . . . ,Nt:

si(t) =


1 + t/τ − i i f t ∈ [ti−1, ti]
1 − t/τ + i i f t ∈ [ti, ti+1]

0 otherwise
(3)

Then, the density function of heat flow is expressed as follows φ(t) =
Nt∑
i=0
φi si(t) =

(
φ
)tr

s(t) and

the equation of motion of the heat source is expressed as follows x(t) =
Nt∑
i=0

xisi(t) = (x)tr s(t)

and y(t) =
Nt∑
i=0
yi si(t) = (y)tr s(t). It denotes that “tr” is the symbol of the transposition matrix.

To evaluate the reliability of the proposed mathematical model to simplify the heat trans-
fer equation into two-dimensional space, a set of heat sensors are fixed on the metal plate in
order to collect temperature data from the sensor locations during the experiment. Or, the
temperature value on the sheet metal is heated by each heat source recorded by sensors. Fur-
thermore, to assess the effect of errors during the measurement process, it is assumed that the
temperature collected from the sensors has been affected by the noise. These disturbances
are followed by Gaussian probability distributions N (µ, σ2) with mean µ = 1 and standard
deviation σ = 0.

2.2 Mathematical modelling of studied system

Temperature θ (x, y, t) is described by the following partial differential equation system as
follow where density ρ in kgm−3, specific heat capacity c in Jkg−1K−1, thermal conductivity
λ in Wm−1K−1, natural heat convection coefficient h in Wm−2K−1 and ambient temperature
θ0 in K(Kevin) are assumed to be constant.
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The direct problem of this system is expressed by equation (4), when the source term
Φ (x, y; t) − 2h (θ (x, y; t) − θ0)

e
, expressed in Wm−3, is relevant if the thickness e is small

enough. In the studied configuration, according to the heat fluxes range and to the parameters
taken into account in the studied case, a previous numerical study has shown that the 2D
model is valid in comparison with the 3D domain.



∀ (x, y, t) ∈ Ω × T ρc
∂θ (x, y, t)
∂t

− λ∆θ (x, y, t) =
Φ (x, y; t) − 2h (θ (x, y, t) − θ0)

e

∀ (x, y) ∈ Ω θ (x, y; 0) = θ0

∀ (x, y, t) ∈ ∂Ω × T −λ∂θ (x, y, t)

∂−→n
= 0

(4)

Usually, such mathematical problem is solved using numerical method such as the finite
element method [5][6][7] and a numerical software such as Comsol Multiphysics TM inter-
faced with Matlab R© [8][9]. The previous direct problem is well-posed since few noises on
parameters Ψ introduce small disturbances on state estimation θ (x, y, t). Several illustrations
for direct problem solution are shown in the following figures for a mobile source on a small
area of the plate (about 4 square meters, see figure 1).

(a) (b)

(c) (d)
Figure 1. Spatial evolution of temperature on the plate generated by heat source
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Temperatures are observed by a virtual network of 4 mobile sensors located on the plate.
These “observed” temperatures are arbitrarily disturbed by a Gaussian noise. Once a param-
eter is unknown, mathematical formulations of the inverse problem considered in order to
identify the unknown parameters are proposed in the following section.

3 Methodology of inverse problem

3.1 Inverse problem

Let us consider in the following that the source trajectory {xI (t) , yI (t)} is not known and
has to be identified. In such an aim sensors measurements are available: θ̂m(t) provided by
sensors Cm (for m=1 to 5). Even if observations are provided by pyrometers on a small
surface, sensors Cm are assumed to be pointwise.

Inverse problem can be expressed as follows: Find {xI (t) , yI (t)} such that J (θ, I) =
1
2

5∑
m=1

t f∫
0

(
θ (Cm, t; I) − θ̂m (t)

)2
dt is minimum with theta (x, y; t) solution of (3).

Without loss of generalities, a discrete formulation is considered;

Find I =
(
xI , yI

)
such that J

(
θ, I
)
=

1
2

5∑
m=1

n∑
j=1

(
θ
(
Cm, t j; I

)
− θ̂ j

m

)2
is minimum with

θ (x, y; t) solution of (3).
where n is related to the time sample for sensors measurements. CGM is implemented

to identify the unknown parameters [10][11]. This algorithm requires iterative resolution of
three well-posed problems: the direct problem (3) to calculate the cost-function J

(
θ, Ik
)

and

estimate the quality of the estimate Ik at iteration k; the sensitivity problem to calculate the
descent depth (in the descent direction); the adjoint problem to determine the gradient of the
cost-function J

(
θ, I
)

and thus to define the next descent direction [12][13].
In the following, the mathematical formulation of the problems will be presented in detail

in order to calculate the intermediate parameters of the identification method.

3.1.1 Sensitivity problem

Let us consider the variation of temperature δθ(ω) with (ω) = (x, y, t) induced by a variation of

the total heating flux noted: Φ+ (x, y; t) = Φ (ω)+εδΦ (ω) with δθ (ω) = lim
ε→0

(
θ+ (ω) − θ (ω)

ε

)
.

It’s combined with the equation (4), the sensitivity problem is described by the following
system:


ρc
∂δθ(x, y, t)
∂t

− λ∆δθ(x, y, t) =
δΦ(x, y, t) − 2hδθ(x, y, t)

e
∀(x, y, t) ∈ Ω × T

δθ(x, y; 0) = 0 ∀(x, y) ∈ Ω

−λ∂δθ(x, y, t)
∂�n

= 0 ∀(x, y, t) ∈ ∂Ω × T

(5)

where: ξ(ω) =
√

(x − xI(t))2 + (y − yI(t))2

δΦ(ω) =
∂Φ(ω)
∂xI(t)

δxI(t) +
∂Φ(ω)
∂yI(t)

δyI(t)

=
ηφ(t)

πξ(ω)
(
1 + η2 (ξ(ω) − r)2

) ((x − xI(t))δxI(t) + (y − yI(t))δyI(t))
(6)
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The sensitivity problem solution δθ(ω) is useful to calculate the descent depth γk+1 for
each iteration, such as: −→

Φk+1 =
−→
Φk − γk+1−→d k+1 (7)

Descent depth γk+1 minimizes the criterion J
(
θ;
−→
Φ

k+1
)

: [γk+1 = Argmin
γ∈

J
(
θ;
−→
Φ

k+1
)

or

∂J
(
θ;
−→
Φ

k
− γk+1−→d

k+1
)

∂γk+1 = 0. This implies that descent depth calculated at each iteration is:

γk+1 =

t f∫
0

Nc∑
n=1

(
θCn

(
t;
−→
Φ

k+1
)
− θ̂Cn (t)

)
δθ

(
Cn, t;

−→
Φ

k
)

dt

t f∫
0

Nc∑
n=1

(
δθ

(
Cn, t;

−→
Φ

k
))2

dt

(8)

In order to solve the sensitivity problem, the descent direction
−→
d k+1 k ∈ 6Nt has to be known.

In such an aim the cost function gradient has to be computed (according to the following
problem).

3.1.2 Adjoin problem

In order to determine the gradient ∇−→J =
(
∂J
∂xI

;
∂J
∂yI

)
with ∀i = 1, 2, ...,Nt at each iteration, a

Lagrangian formulation �(θ(ω),Φ, ψ) is introduced such that:

�(θ(ω),Φ, ψ) = J(θ(ω),Φ)

+

t f∫
0

∫
Ω

[
ρc
∂θ (ω)
∂t
− λ∆θ (ω) − Φ (ω)

e
+

2h (θ (ω) − θ0)
e

]
ψdΩdt

(9)

If θ(ω) is solution of the heat equation (4) then �(θ(ω),Φ, ψ) = J(θ(ω),Φ)→ δ�(θ(ω),Φ, ψ) =

δJ(θ(ω),Φ). When ψ(x, y; t) is fixed, we denote dθ (ω) = θCn

(
ω;
−→
Φ

k+1
)
− θ̂Cn (ω), the La-

grangian variation can be written as:

δ� (θ (ω) ,Φ, ψ)

= δJ (θ (ω) ,Φ) +
t f∫

0

∫
Ω

[
ρc
∂δθ (ω)
∂t

− λ∆δθ (ω) − δΦ − 2h (δθ (ω))
e

]
ψ (ω) dΩdt

=

t f∫
0

∫
Ω

Nc∑
n=1

dθ (t) δθ (ω) δD (Cn) dΩdt +
t f∫

0

∫
Ω

ρc
∂δθ (ω)
∂t

ψ (ω) dΩdt

−
t f∫

0

∫
Ω

λ∆δθ (ω) ψ (ω) dΩdt +
t f∫

0

∫
Ω

2hδθ(ω)
e
ψ (ω) dΩdt −

t f∫
0

∫
Ω

δΦ

e
ψ (ω) dΩdt

(10)

Let us denote by E (ω) =
Nc∑

n=1
dθ (ω) δD

(
x(t) − xCn (t)

)
δD
(
y(t) − yCn (t)

)
with

δD
(
x − xCn

)
δD
(
y − yCn

)
the Dirac distribution related to sensor Cn

(
xCn , yCn

)
. Then it

comes:

δ� (θ (ω) ,Φ, ψ) =
t f∫

0

∫
Ω

[
E (ω) − ρc∂ψ (ω)

∂t
− λ∆ψ (ω) +

2hψ (ω)
e

]
δθ (ω) dΩdt

+ρc
∫
Ω

δθ
(
x, y; t = t f

)
ψ (ω) dΩ + λ

t f∫
0

[
δθ (ω)∇ψ (ω)

]
∂Ωdt −

t f∫
0

∫
Ω

δΦ
ψ (·)

e
dΩdt.

(11)
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Since
∂� (θ (x, y; t) ,Φ, ψ)
∂θ (x, y; t)

δθ (·) = 0 ∀δθ (x, y; t), then the terms multiplied by δθ (x, y; t)

have to be equal to zero, then it is necessary that the adjoin function ψ (x, y; t) is solution of
the following problem:



ρc
∂ψ(x, y, t)
∂t

+ λ∆ψ(x, y, t) = E(x, y, t) +
2hψ(x, y, t)

e
∀(x, y, t) ∈ Ω × T

ψ(x, t; t f ) = 0 ∀(x, y) ∈ Ω

−λ∂ψ(x, y, t)
∂�n

= 0 ∀(x, y, t) ∈ ∂Ω × T

(12)

Finally, when ψ(x, y, t) is solution of the previous problem then: δ� (θ (x, y, t) ,Φ, ψ) =
∂� (θ (x, y, t) ,Φ, ψ)

∂Φ
δΦ = −

t f∫
0

∫
Ω

δΦ
ψ (x, y, t)

e
dΩdt = δJ (θ (x, y, t) ,Φ).

After several mathematical developments which cannot be presented due to the limited
number of pages of this communication, cost function gradients can be formulated as follows:

∇Jxi
I
= −

t f∫
0

∫
Ω

ηφ(t)
π

(x − xI(t))si
xI

(t)

πξ(x, y, t)
(
1 + η2 (ξ(x, y, t) − r)2

) ψ(x, y, t)
e

dΩdt

∇Jyi
I
= −

t f∫
0

∫
Ω

ηφ(t)
π

(x − yI(t))si
yI

(t)

πξ(x, y, t)
(
1 + η2 (ξ(x, y, t)‘ − r)2

) ψ(x, y, t)
e

dΩdt
(13)

The descent direction can be estimated at each new iteration k+1 from the previous gradient
formula, as follow:

−→
d k+1 = −−→∇J(θ;Φk) +

∥∥∥∥−→∇J(θ;Φk)
∥∥∥∥

2

∥∥∥∥−→∇J(θ;Φk−1)
∥∥∥∥

2

−→
d k (14)

where ‖·‖ is the Euclidean norm.
In the following section, the application of the online identification method based on the
iterative regularization method (CGM) considering a network of fixed sensors is numerically
implemented in order to identify the flux density as well as the trajectory of two sources.

3.2 Identification method based on CGM using sensitivity of sensor network

In recent works [3] authors have investigated the interest of CGM adaptation to quasi on line
identification. Indeed, the main inconvenient for CGM is the convergence time which can be
very important according to the problem complexity. Several strategies have been tested and
compared to the reference strategy which is the offline approach: identification algorithm is
launched when all the measurements are available. Quasi online identification is based on
time windows for observation which are sliding according to the identification process.

- constant offset with constant time window size;
- adaptive overlap with constant time window size;
- time window size related to a priori information;
- adaptive time window size and constant offset;
- adaptive time window size and adaptive overlap.

In the configuration studied in [3] the last strategy has provided identification result in a
computational time divided by 200 in comparison with the reference strategy (offline iden-
tification). From the results obtained from the method of choice of sensors in offline mode
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proposed above, we develop another method of choice of sensors in quasi-online mode. Near-
line identification is performed using the adaptation of the conjugate gradient method (pre-
dictive with adaptive window size) using the on-line sensor selection algorithm.

Algorithm of selectioning sensor method based on the sentivity problem
Step 1 - initialisation of parameter: k, L2

- time interval τm = [τ−m, τ
+
m]

Step 2 - solve the sensitivity problem
- extract values of θ(Ck, t)

Step 3 - calculate L2
k = ‖δθ (Ck, t)‖

- choose a sensor having the largest value of L2

- remove this sensor in the list
Step 4 - update index k = k + 1

- if (k > kmax)
→ end of algorithm

- return to step 1.

This algorithm allows us to select the most relevant sensors over the time interval τm =[
τ−m, τ

+
m
]

in which to deploy the robot-sensors. In addition, the online identification method
makes it possible to "continue" during the experiment the mobile sources. This method relies
on finding the most sensitive sensors by maximizing the following standard over slippery
time intervals τm:

L2
k = ‖δθ (Ck, t)‖ =

√∑
τm

(δθ (Ck, t))2 (∀k) (15)

First of all, it is necessary to determine the time interval using the method of Determina-
tion of the interval proposed and to initialize the parameters of the algorithm. By comparing
these sensor standard values, the most sensitive sensors are selected. These are the optimal
positions (in the sense of sensitivity) for robot-sensors in the next interval of the identifica-
tion window. The application of this online sensor selection algorithm makes it possible to
develop optimal sensor deployment strategies.

4 Numerical results and discussion

By applying proposed identification method based on CGM for an inverse problem combined
with the sensitivity of sensor network, we can build an example to identify trajectory of a
mobile heat source. After realizing the algorithm of this method, we obtained some results
of identification process (see figure 2).

(a) Time interval 0 to 71 (b) Time interval 240 to 321 (c) Time interval 776 to 847
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Figure 2. Results of identification process

In these above figures, a set of four better sensors were chosen in order to track the
movement of the heat source according to its trajectory. These sensors provide the measured
temperatures for an acquisition which is used in the proposed identification method based on
CGM. It allows identifying the trajectory of this mobile heat source. It is now necessary to
identify for each source the position every 15 seconds.

This represents an experiment of 1800 seconds is 121 parameters to identify. The acqui-
sition of temperatures at different points on the plate will be carried out by a pack of 4 mobile
sensors.
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Figure 3. Results of identified trajectory and time of relay

In figure 3, the figure (a) shows the identified trajecroty of the mobile heat source by using
the proposed method. While the duration of the campaign is 1800 seconds, the estimation
procedure converged in 1886 seconds, 86 seconds after the end of the experiment, the average
identification delay is 85 seconds. We also obtain the following results (identification time,
average temperature residues, the standard deviation of residues):

Table 1. Results of quasi-online identification process

tidenti f ication (s) µresidues (K) σresidues (K)
1886 -0.19 0.64
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5 Conclusion and outlooks

In this paper, a quasi-online unknown parameter identification method is proposed by using
an iterative minimization based on the conjugate gradient method. Considering a mobile
radiative heating source on a plane metallic surface, several mobile sensors are used in or-
der to determine the unknown source trajectory. This ill-posed inverse problem is solved
quasi-online by means of adapted iterative regularization method by minimizing a quadratic
cost-function. This iterative regularization technique was used for an inverse problem in the
thermal domain. Furthermore, the sensitivity problem of the sensor network was investigated
to propose a method to choose the better position of each sensor. With the numerical results
of this research, some future prospects are related to developing the whole methodology and
to proposing the identification of new strategies for sensor moving and source tracking (in
order to take into account redundancy and several heating sources). A long-term goal is the
management of a fleet of embedded sensors, e.g. in the automobile, in order to track polluting
cloud in a city.
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