

Time Complexity of an Distributed Algorithm
for Load Balancing of Microservice-oriented
Applications in the Cloud

Marian Rusek1,* and Joanna Landmesser2

1,2Warsaw University of Life Sciences – SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland

Abstract. Microservice architecture is a relatively new cloud application

design pattern. Each microservice has a single responsibility in terms of

functional requirement, and that can be managed independently from other

microservices. This is done using automated cloud orchestration systems.

In this paper we analyze the time complexity of an simple swarm-like

decentralized load balancing algorithm for microservices running inside

OpenVZ virtualization containers. We show that it can offer performance

improvements with respect to the existing centralized container

orchestration systems.

1 Introduction

Monolithic enterprise systems are difficult to scale, difficult to understand and difficult to

maintain. Microservices-based architecture is free of these problems [1]. Designed with

cloud-based applications in mind it advocates creating a system from a collection of small,

isolated microservices, each of which owns their data and uses lightweight HTTP

mechanisms for communication with other microservices. These microservices integrate

with each other in order to form a cohesive system that is more flexible, scalable and

resilient to failure than a corresponding monolithic system. In this way the accidental

complexity is shifted from inside of an monolithic application into the cloud infrastructure.

Microservices are deployable by fully automated cloud machinery, but there is still a

necessity for centralized monitoring and management of an microservces based application.

Examples of such microservices orchestration tools are Google Kubernetes [2], Apache

Mesos [3], and Docker Swarm [4].

Virtualization containers are ideal for practical realization of the concept of

microservices [5]. Virtualization container is a group of processes isolated from the rest of

the system. Different containers running on the same machine share the host’s operating

system kernel. Recent interest in virtual containers is associated with their performance.

Public cloud virtual machines have to boot a full operating system and for every time it

takes up to several minutes. In contrast to this the startup time for a container is around a

second. This technology is not new but before Docker there was no common interface for

container management and there was no standard format of how container is described in

* Corresponding author: marian_rusek@sggw.pl

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

ITM Web of Conferences 21, 00018 (2018)
CST 2018

https://doi.org/10.1051/itmconf/20182100018

mailto:marian_rusek@sggw.pl

the system. All three orchestration systems mentioned above work with Docker containers.

The role of orchestration and scheduling within these container platforms is to match

microservices-based application containers to cloud servers resources.

The actual realization of a microservices-based application in the cloud requires that we

instantiate and place virtualization containers responsible for individual microservices on

real machines forming the cloud. Container live migration allows a user to start a

microservice on any node of the cloud after which it can transparently move to other nodes

to make efficient use of resources. The basic idea is that overall system performance can be

improved if microservices are moved from heavily loaded to lightly loaded machines.

However instead of offloading machines we can imagine that code is moved to make sure

that a machine is sufficiently loaded. For example, migrating complete virtual machines to

lightly loaded machines in order to minimize the total number of nodes being used is a

common practice in optimizing energy usage in data centers [6]. Another advantage of live

migration is the ability to put the code processing the data close to where the data reside.

This allows minimizing communication what is an important issue in today’s distributed

cloud environments [7]. In this paper we focus on the first from these scenarios (load

balancing).

Note, that Docker compatible container systems can not provide live migration. Docker

was created for different purpose, an automated application deployment, but there is

commonly used, container-based virtualization software, Parallels Containers, which

supports live migration [8]. Thus the experimental results discussed in our previous papers

were obtained using OpenVZ, an open source version of Parallels Containers. Moreover all

the existing container orchestration systems (Google Kubernetes, Apache Mesos, and

Docker Swarm) are monolithic applications running as daemons on dedicated nodes of the

cloud. They orchestrate containers in a centralized fashion. Usually decentralized

orchestration systems offer performance improvements [9]. For example, decentralized

orchestration of composite web services yields increased throughput, better scalability, and

lower response time. In connection to this, in this paper we analyze the performance of a

completely decentralized microservice management system based on swarm algorithm.

This paper is organized as follows: In Sec. 2 the distributed algorithm for load balancing

of containerized microservices in the cloud proposed in our previous paper [10] is recalled.

In that previous paper a “cloud” consisting of 18 servers only was studied experimentally.

In Sec. 3 a mathematical model is introduced which allows us to investigate arbitrarily large

clouds and analyze the time complexity of our algorithm. In Sec. 4 numerical simulations

for 1000 servers and 50000 containers are also presented. We finish with a summary and

some conclusions in Sec. 5.

2 Distributed Algorithm

The question of the optimal distribution of the containers on the hosts can have multiple

variants. One of them is the uniform distribution of the containers on the hosts. This

scenario is the following: we have N hosts (cloud servers) loaded with virtualization

containers (containing microservices). At the start containers are arranged in a way that

there is not the same number of them ni on i-th host. Uniform distribution means that the

targeted number of containers on every host is equal to n0, and the goal of the algorithm is

to achieve this state of balance. A decentralized algorithm for controlling the uniform

distribution of tasks between nodes of a simple computational cloud was presented in our

previous paper. In that approach, each host is described by a pheromone pi which can be

either repulsive 0 < pi < 1 or attractive pi < 0. Attractiveness or repulsiveness is associated

with the number of containers already ni on the host and the number of containers queued

for migration in the kernel queue Qi:

2

ITM Web of Conferences 21, 00018 (2018)
CST 2018

https://doi.org/10.1051/itmconf/20182100018

Ni
Qn

nQn
p

ii

ii
i ,...,1,0 




 (1)

Note, that during migration the container’s files are present on both source and

destination hosts. Therefore the total number of containers calculated as sum of ni over all

hosts is not conserved. To prevent the containers from being counted twice, what in Eq. (1),

we subtracted from the number of containers ni present in the file system of the i-th hosts

the number of containers Qi queued for migration from this host. In this way the migration

process of a container appears to be instantaneous to its neighboring containers on the same

host. As shown in our previous paper [11] this prevents the unstable behavior of the

algorithm without this subtraction.

In addition to cloud application microservice each container runs an additional process

implementing it’s swarm-like mobile agent intelligence. It executes the following

pseudocode [11]:

1: loop

2: Compute the pheromone value p of the current host.

3: Generate a random number 0 < r < 1.

4: if r < p

5: repeat

6: Randomly choose a new host.

7: Get the pheromone value of the chosen host.

8: until chosen host has an attractive pheromone

9: Ask the current host to migrate to chosen host.

10: Wait until migration to another host is complete.

11: end if

12: end loop

Thus the pheromone value pij of the host is equal to migration probability of a container.

In the following it will be assumed for simplicity that the containers are identical and

have almost the same memory, disk, and processor requirements. An analogous assumption

will be made for the hosts: the memory, disk, and processing performance of each host is

the same.

3 Mathematical Model

The distributing of a robot swarm among multiple tasks can be described using delay

differential equations [12]. Let us write a similar system of equations for the swarm of

containers from Sec. 2. The main difference is that in [12] the migration probabilities

between hosts are constant, and it can be shown that the system has a unique, stable

equilibrium point. In contrast we dynamically adjust the migration probabilities (see Eq.

(1)) so the system reaches not some equilibrium point, but an equilibrium point that is

interesting to us (i.e., ni = n0).

Let us assume that it takes a time T to migrate a container between any pair of hosts.

The change in time of the number of containers Qi queued for migration on the i-th host is

due to new containers entering it with probability pi and containers leaving it due to

migration to other hosts. Thus

NiTtQtntp
dt

tdQ
iii

i ,...,1),()()(
)('  (2)

3

ITM Web of Conferences 21, 00018 (2018)
CST 2018

https://doi.org/10.1051/itmconf/20182100018

where NitQtntn iii ,...,1),()()('  is the number of containers still undecided to

migrate, i.e., generating random numbers r and comparing them to pi in the loop from Sec.

2. The change in this number is due to containers entering the migration queue on the same

host and migrating randomly from other hosts with probability 1/(N - 1):

NiTtQ
N

tntp
dt

tdn

ij

jii
i ,...,1,)(

1

1
)()(

)('
'




 


 (3)

A finite number of containers will usually be en route between hosts, but it follows from

Eqs. (2) and (3) that the total number of containers is conserved: 0)(
i

j tn
dt

d
.

Note, that the delayed differential Eqs. (2) and (3) model can not take into account the

finite network bandwidth. The containers migrate during time T but infinitely many of them

can migrate in parallel. This will be corrected in the numerical simulation presented in the

next section.

Usually a solution of delayed differential equations is not possible using elementary

functions. Therefore in this section we will limit ourselves to the solution of a simpler

linear model. It assumes that containers instantaneously migrate from one host to another.

The system of equations governing the dynamics of the system reads as:

Nitntp
N

tntp
dt

tdn

ij

jjii
i ,...,1,)()(

1

1
)()(

)(''
'




 


 (4)

After substituting Eq. (1) and introducing a new notation Nintntn ii ,...,1,)()(0
'''  ,

Eqs. (4) reduce to the system of linear equations:

Nitn
N

tn
dt

tdn

ij

ji
i ,...,1,)(

1

1
)(

)(''''
''




 


 (5)

which can be easily solved using diagonalization. There are N - 1 eigenvectors

]1,0,...,0,0,1[,],0,...,1,0,1[],0,...,0,1,1[  (6)

corresponding to eigenvalues - N/(N - 1), and one eigenvector [1, ..., 1] corresponding to

eigenvalue 0. Thus all solutions decay exponentially in time. Interestingly, a system of two

hosts decays twice as fast as a system of a large number of hosts.

Also as opposed to the algorithm from Sec. 2 the choice of the destination host in Eqs.

(5) (and (3)) is random. However this choice is less effective than the choice of the host

with an attractive pheromone. Therefore the solution of Eq. (6) should predict a correct

upper bound on the pessimistic time complexity of the swarm algorithm from Sec. 2. The

initial state of the system Nini ,...,1),0(''  , can be expanded into eigenvectors from Eq.

(6). They then decay exponentially.

First we consider a limiting case of one empty host at the initial time:

1

,,...,2,1)0(

0)0(

0

0

1







Nn

Ninn

n

i (7)

4

ITM Web of Conferences 21, 00018 (2018)
CST 2018

https://doi.org/10.1051/itmconf/20182100018

In order to reach the final state ni = n0 the number of N - 1 containers need to be

migrated. It is readily seen that]1,...,1),1([)0(''  Nn . This vector is equal to the sum of

all eigenvectors from Eq. (6) corresponding to the same eigenvalue. Let us denote by τ the

time for which 1)('' in . For t > τ it is already decided which containers should move

where in order to bring the system into the desired equilibrium state ni(t0) = n0. The time τ
depends on the size of the cloud as log(N). Thus the time t0 at which equilibrium is reached

grows in the worst case linearly with N. Thus the time complexity of our distributed

algorithm should be O(N) or better. We will check this prediction in the next section.

Interestingly the second limiting case of one non empty host at the initial time:

1

,,...,2,0)0(

)0(

0

1







n

Nin

Nn

i (8)

correspond to the same initial vector]1,...,1,1[)0(''  Nn . And also N - 1 containers

need to be migrated. In the next section using a more realistic numerical model, we will

show that surprisingly this case behaves different from the previous one.

4 Numerical Simulation

In this section results given by a simple cellular automaton-like simulator are presented.

The simulation operates on two arrays:
'
in and Qi — thus the containers are identical and

indistinguishable from each other. The simulator is single-threaded but nevertheless is able

to reproduce the experimental distribution of stabilization times t0 for a system of 18 hosts

presented in our previous paper [11]. At each time step all the active (i.e., not waiting in the

migration queue) containers calculate their migration probability according to Eq. (1),

decide to migrate or not to migrate, and chose their destination host with an attractive

pheromone like in the pseudocode presented in Sec. 2 (and not randomly like in the

mathematical model from Sec. 3). Than one container from each migration queue is

allowed to transfer itself to another host. Each time step has a duration of the migration

time T. Thus as opposed to the model from the previous section in takes into account finite

network bandwidth.

First we performed 10000 simulations of situation corresponding to Eq. (7). The

parameters were chosen in accordance with the presentation of Docker Swarm at

DockerCon 2015 Conference: n0 = 49, N = 1000 (at that conference a system of 1000 hosts

with 50000 containers was demoed). The experiment ended when the numbers of the

containers reached equilibrium ni = n0 and all the migration queues were empty Qi = 0. In

Fig. 1 we have a histogram of times needed to reach equilibrium t0. We see that although 49

containers need to be transferred to reach the desired final state the average stabilization

time is around 85 T. This is due to the fact, that the algorithm presented in Sec. 2 is

probabilistic and sometimes more than one container chooses to migrate. Such containers

interact with each other by entering the same migration queue.

5

ITM Web of Conferences 21, 00018 (2018)
CST 2018

https://doi.org/10.1051/itmconf/20182100018

Fig. 1. Histogram of times needed to reach equilibrium t0 for a system corresponding to Eq. (7).

Next the experiment was repeated for increasing number of hosts. The initial state was:

one host in 50 empty and the remaining had 50 containers each. Therefore for N = 50 one

host was initially empty, for N = 100 ─ two hosts, for N = 150 ─ three hosts, and for

N = 1000 ─ fifty hosts were initially empty. The scaling behavior of the average value of t0

is depicted in Fig. 2. We see, that the time complexity of the algorithm is of the order of

O(N) in this case. Therefore although the mathematical model from Sec. 3 predicts time of

the order of O(log N) to predict which container should migrate where, the majority of time

in the case of Eq. (7) is spend on emptying the migration queues (this process is obviously

of linear order).

Let us now present the same plots calculated for the second case corresponding to Eq.

(7). They are presented in Figs. 3 and 4. Again sometimes more than one container chooses

to migrate — this is the reason why the histogram from Fig. 3 is not centered around 49 T.

Surprisingly the time complexity as depicted in Fig. 4 in this case is a logarithmic one.

Thus the mathematical model from Sec. 3 in specific cases can very well describe reality.

Fig. 2. Scaling of the average time needed to reach equilibrium t0 with the number of hosts N. Initial

conditions are given by Eq. (7).

6

ITM Web of Conferences 21, 00018 (2018)
CST 2018

https://doi.org/10.1051/itmconf/20182100018

Fig. 3. Histogram of times needed to reach equilibrium t0 for a system corresponding to Eq. (8).

Fig. 4. Scaling of the average time needed to reach equilibrium t0 with the number of hosts N. Initial

conditions are given by Eq. (8).

5 Summary

In summary, an decentralized algorithm for load balancing of containerized microservices

in the cloud was studied theoretically and numerically. Each container includes an

additional mobile agent process which governs its migration to another nodes of the cloud.

Thus the tasks running on the nodes of the cloud self-organize to maintain a constant load

among the servers. The resulting system is resilient on server failures: a failing server can

take down only a minimal number of tasks.

The performance of a similar centralized algorithm is of the order of O(N log N). First

the numbers of containers on all hosts are sorted. Next the list is traversed from both sides

and decision is made which containers should be migrated where. The decentralized

algorithm studied in this paper gives the worst case time complexity of the order of O(N),

and in specific cases even O(log N).

Swarm systems consisting of multiple autonomous agents exhibit complex behaviours.

The interaction between the robots and its environment is very important to achieve the

overall group performance. The analyzing of the system’s behaviour using real and

7

ITM Web of Conferences 21, 00018 (2018)
CST 2018

https://doi.org/10.1051/itmconf/20182100018

simulated experiments is often expansive and time-consuming. Therefore, the observation

of, for example, social insects can help in the extraction of ideas and models underlying

natural systems and apply them to artificial problems. Using mathematical models we can

efficiently study the swarm systems in order to better understand them as a whole.

In our paper, the problem of designing control policies that enable the swarm of agents

(virtualization containers) to distribute themselves between multiple sites (servers) was

solved using a system of differential equations that summarize the state transitions.

However, one should not forget that in more sophisticated cases, interactions among the

agents may lead to the transition probabilities that are a function of the number of agents in

other states, and thus yield a system of differential equations that are time delayed and

nonlinear. Hence, there are many directions for the future work. We would like to extend

our linear model and implement nonlinear transition rules as well as time delays. The other

idea could be to model large agent populations using partial differential equations. Also the

use of stochastic differential equations should be considered.

References

1. J. Thönes, IEEE Softw., 32(1), 116 (2015)

2. E.A. Brewer, Proceedings of the Sixth ACM Symposium on Cloud Computing, 167

(2015)

3. B. Hindman, B., A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R.H. Katz, S.

Shenker, I. Stoica, Proceedings of the 8th USENIX Symposium on Networked Systems

Design and Implementation, 295–308 (2011)

4. J. Stubbs, W. Moreira, R. Dooley, 7th International Workshop on Science Gateways

(IWSG), 34–39 (2015)

5. C. Pahl, IEEE Cloud Comput., 2(3), 24–31 (2015)

6. M. Zhao, R.J. Figueiredo, Proceedings of the 2nd International Workshop on

Virtualization Technology in Distributed Computing, 5 (2007)

7. N. Kratzke, CLOUD COMPUTING 2015: The Sixth International Conference on

Cloud Computing, GRIDs, and Virtualization, 165–169 (2015)

8. A. Mirkin, A. Kuznetsov, K. Kolyshkin, Proceedings of Linux Symposium, 2, 85–90

(2008)

9. A.Y.U. Gital, A.S. Ismail, H. Chiroma, A. Abubakar, B.M.A. Abdulhamid, I.Z.

Maitama, A. Zeki, Information and Communication Technology for The Muslim World

(ICT4 M 2014), 1–6 (2014)

10. M. Rusek, G. Dwornicki, A. Orłowski, Advances in Systems Science, ICSS 2016.

Advances in Intelligent Systems and Computing, 539, 142–152 (2017)

11. M. Rusek, G. Dwornicki, A. Orłowski, Proceedings of 36th International Conference

on Information Systems Architecture and Technology – ISAT 2015 – Part III. Advances

in Intelligent Systems and Computing, 431, 75–85 (2016)

12. S. Berman, Á. Halász, M.A. Hsieh, Bio-inspired Computing and Networking (2011)

8

ITM Web of Conferences 21, 00018 (2018)
CST 2018

https://doi.org/10.1051/itmconf/20182100018

