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classification method, the determination of the number of classes, evaluation of the 

classification results and their interpretation. That approach allows to detect whether the 

received aggregations indicate some regularity, reduction of large data sets, and also to 

carry out further multidimensional analysis. The available solutions for the problem of 

cluster analysis allow the use of partitioning algorithms, hierarchical algorithms or density-

based algorithms.  

The partitioning algorithms concern the attempt to find the optimal division of a set of 

objects, in such a way that the objects within the cluster are more similar to each other than 

to objects from other clusters. This method requires defining a clustering criterion. This 

type of algorithm includes the k-means algorithm [3, 4] and the k-medoids algorithm [5, 6]. 

The first of these divides n objects into k-clusters, in which each object belongs to the 

cluster with the nearest average. The target function used in k-means algorithm is usually a 

squared error. The main disadvantage of this algorithm is that we have to determine the 

number of clusters in advance. Unfortunately, there is no universal method to find the 

optimal number of clusters. Another disadvantage is that the algorithm fails for categorical 

data. Also, if there are two very overlapping data, the k-funds will not be able to determine 

that there are two clusters. The k-medoids algorithm, in contrast to the k-means algorithm, 

assumes the median as the center of the cluster. However, the resulting clustering depends 

on the units of measurement. 

The hierarchical algorithms [7, 8] rely on a hierarchical attempt to discover the structure 

of the set by decomposing the cluster. These algorithms build a cluster tree (a dendrogram) 

showing relationships between selected elements. The hierarchical clustering algorithms are 

monotonic, because they either increase or decrease. There are two types of hierarchical 

clustering: bottom up (agglomerative method) or top down (divisive method). In top-down 

clustering method we assign all objects to a single cluster and next partition this cluster to 

two least similar clusters. This step is repeated until each object is in a separate cluster or 

interrupt condition will be fulfilled. In bottom-up clustering method we assign each object 

to its own cluster. Then, these clusters are successively combined until all are in a single, 

hierarchical group. Clusters are combined according to a specific measure, e.g. the distance 

between their centers. 

The last group of cluster analysis algorithms are the density-based algorithms, which 

divide sets of object using the probabilistic model for base clusters. This algorithm group 

includes, for example, the DBSCAN (Density-Based Spatial Clustering of Applications 

with Noise) algorithm [9] and OPTICS (Ordering Points To Identify Clustering Structure) 

algorithm [10]. These algorithms connect objects to form clusters based on regions with 

high data density and separated from other clusters by regions with low data content. This 

means that until the number of objects around the cluster is large (with a given parameter), 

the cluster will grow. However, the quality of the DBSCAN and OPTICS algorithm 

depends to parameters, such: neighborhood radius and the number of minimum points 

required to form a cluster. The parameter selection process is tricky. 

The characteristics of cluster analysis methods show that we need to define a metric for 

the space representing objects [11]. The metric d (1) can be a mapping of the X x X 

Cartesian product to a set of non-negative numbers R. 

                                                  𝑑: 𝑋 𝑥 𝑋 → [0, +∞ )       (1) 

The defined assumptions for all vector pairs xa,xbX(a,b=1,2,…) are related to rules 2, 3 

and 4: 

𝑑(𝑥𝑎, 𝑥𝑏) = 0 ↔ 𝑥𝑎 ≡ 𝑥𝑏       (2) 

𝑑(𝑥𝑎, 𝑥𝑏) = 𝑑(𝑥𝑏 , 𝑥𝑎)       (3) 
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𝑑(𝑥𝑎, 𝑥𝑏) ≤ 𝑑(𝑥𝑎 , 𝑥𝑐) + 𝑑(𝑥𝑐, 𝑥𝑏)     (4) 

One of the most commonly used metrics in cluster analysis is the Euclidean metric. 

However, a generalized measure of the distance between the points of the Euclidean space 

is the Minkowski metric (5): 

𝑑(𝑥, 𝑦) = (∑ |𝑥𝑖 − 𝑦𝑖|𝛼𝑁
𝑖=1 )1/𝛼       (5) 

If we use α= 2, then we will get the Euclidean metric. For α= 2 we will get the get a 

Manhattan metric. Other popular distance measures for measurable features are: the 

Mahalanobis measure (6) and Canberry (7). 

𝑑𝑀𝑎(𝑥, 𝑦) = ∑ (𝑥𝑖 − 𝑦𝑖) ∑(𝑥𝑖 − 𝑦𝑖)−1
𝑖𝑗     (6) 

𝑑𝐶𝑎(𝑥, 𝑦) = ∑
|𝑥𝑖−𝑦𝑖|

|𝑥𝑖+𝑦𝑖|

𝑁
𝑖=1       (7) 

where x, y are vectors, ∑  is the covariance matrix of the x and y, and N is the number of 

vector features. 

The cluster analysis algorithms often use also Hamming metric and the Jaccard 

similarity coefficient. Hamming metric (8) is used for data vectors that have attributes 

represented by binary values. The Jaccard similarity coefficient (9) measures similarity 

between finite sample sets, and is defined as the size of the intersection divided by the size 

of the union of the sample sets. 

𝑑𝐻(𝑥, 𝑦) = ∑ (𝑥𝑖 ⨁𝑦𝑖)̅̅ ̅̅ ̅̅ ̅̅ ̅̅𝑁
𝑖=1       (8) 

where ⨁ means the sum of modulo two. 

𝐽(𝑥, 𝑦) =
|𝑥 ∩𝑦|

|𝑥∪ 𝑦|
        (9) 

 

The values assumed by the Jaccard coefficient are contained in a subset of a set of real 

numbers <0.1>. If the Jaccard coefficient assumes values close to zero, then the sets are 

different from each other. If the Jaccard coefficient assumes values close to 1, then the sets 

are similar to each other. This is particularly important for objects represented by vectors of 

binary data. For example, we can consider two objects (O1 and O2) represented by vectors 

of binary data, where there are 4 dichotomic variables (Table 1). 

Table 1. The example objects represented by vectors of binary variables 

Items of 

variables 
x1 x2 x3 x4 

O1 1 0 1 0 

O2 1 1 0 1 

 

In order to measure similarity of asymmetric categorical data, we can calculate: number of 

attributes where O1 is 1 and O2 is 0 – formula (10), number of attributes where O1 and O2  

are 1 - formula (11), number of attributes where O1 and O2  are 0 - formula (12), number of 

attributes where O1 is 0 and O2 is 1 – formula (13). 

𝐷 = ∑ 𝑥𝑂1
(1 −  𝑥𝑂2𝑖 )      (10) 
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𝐸 = ∑ 𝑥𝑂1
𝑥𝑂2𝑖        (11) 

𝐹 = ∑ (1 −  𝑥𝑂1)(1 −  𝑥𝑂2𝑖 )     (12) 

𝐺 = ∑ (1 −  𝑥𝑂1𝑖 ) 𝑥𝑂2
      (13) 

where xO1 is value of observation O1 in the variable i-th, and xO2 is value of observation O2 

in the variable i-th. 

The Jaccard coefficient for similarity of asymmetric binary attributes of object O1 and 

object O2 is defined by formula (14): 

𝐽(𝑂1 , 𝑂2) =
𝐸

𝐸+𝐺+𝐷
       (14) 

Which algorithm and metric are therefore the most effective for the problem of cluster 

analysis? The research and analysis conducted by the authors this article have shown that 

there is no such classifier that would work effectively (or even satisfactorily) in all possible 

situations. There are also such cases in the field of problem analysis of categorical data sets 

that without a priori knowledge, even the density-based algorithms will return erroneous 

results. The solution presented in the further part of the article deals with this type of 

problem. 

2 Problem definition 

The categorical data are variables representing one of the finite number of categories. 
Examples of such data are ID numbers, nationality, purchased product, interests, etc. We 

can use the Jaccard coefficient (14) as a measure of dissimilarity (or similarity) for many 

collections of categorical variables. This coefficient is defined as the ratio of the number of 

variables for which the objects differ to the total number of all variables describing the 

objects. However, what if this measure for many case objects returns the same values, but 

these objects should be assigned to different groups? 

Let’s consider a set of only 24 objects represented by 4 categorical variables. For 

example, contact lenses dataset. Each of the 24 objects of this set (Table 2) is described by 

the vector of the following attributes: age {young, pre-presbyopic, presbyopic}, spectacle 

prescription {myope, hypermetrope}, astigmatism {no, yes}, tear-prod-rate {reduced, 

normal}. 

Table 2. The characteristics of the variable objects from the lenses dataset 

Object/ 

attributes 
Age 

Spectacle 

prescription 

Astigmatis

m 

Tear-prod 

rate 

O1 young myope no reduced 

O2 young myope no normal 

O3 young myope yes reduced 

O4 young hypermetrope no reduced 

O5 young hypermetrope no normal 

… … … … … 

O10 
pre-

presbyopic 
myope no normal 

… … … … … 

O24 presbyopic hypermetrope yes normal 
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The set presented in table 2 is available from the UCI Machine Learning Repository. this 

object collection is very interesting, because contains all possible combinations of values of 

categorical data. Therefore, we have the same number of young (8) patients, pre-presbyopic 

(8) and presbyopic (8). The same number of patients having myope (12) and hypermetrope 

(12). The same number of patients who have astigmatism (12) and don’t have astigmatism 

(12). The same number of patients who have a reduced tear production rate (12) and the 

same number who have normal (12). We could apply the algorithm of rule induction or one 

of the density-based algorithms. However, we need to know the number of clusters for the 

correct division of objects and the decision attribute. We know from the repository that 

each of the 24 objects can belong to one of three groups: hard contact lenses (class1), soft 

contact lenses (class2) or none contact lenses (class3). Then we could point out the 

classification rules. We could use the proposed by Cendrowska an algorithm for inducing 

modular rules. These rules are: 

1) If astigmatism = no  

and tear-prod-rate = normal  

and spectacle-prescrip = hypermetrope then soft contact lenses 

2) If astigmatism = no  

and tear-prod-rate = normal  

and age = young then soft contact lenses 

3) If age = pre-presbyopic and astigmatism = no and tear-prod-rate = normal then soft  

4) If astigmatism = yes  

and tear-prod-rate = normal  

and spectacle-prescrip = myope then hard contact lenses 

5) If age = young  

and astigmatism = yes  

and tear-prod-rate = normal then hard contact lenses 

6) If tear-prod-rate = reduced then none  

7) If age = presbyopic and tear-prod-rate = normal  

and spectacle-prescrip = myope  

and astigmatism = no then none contact lenses 

8) If spectacle-prescrip = hypermetrope  

and astigmatism = yes  

and age = pre-presbyopic then none contact lenses 

9) If age = presbyopic  

and spectacle-prescrip = hypermetrope  

and astigmatism = yes then none contact lenses 

However, let's consider the case, that we have this set of data without the knowledge 

about the decision attribute and without the knowledge about the correct number of 

classification groups. The experiments carried out by the authors showed that both the k-

means algorithm and k-medoids algorithm, proved to be ineffective. The density-based 

algorithms also required knowledge on the expected parameters. The cluster analysis using 

similarity metrics for such a dataset is difficult, because even Jaccard's coefficient does not 

give correct results. If we consider an objects: O3 [young, myope, yes, reduced] and object 

O8 [young, hypermetrope, yes, reduced], and next O8 [young, hypermetrope, yes, reduced] 

and object O24 [presbyopic, hypermetrope, yes, normal], we will see that they differ in one 

argument (first or last) and they belong to 3 different classes. However, the difference and 

the rule is the same in case O7 [young, hypermetrope, yes, normal] and object O8 [young, 

hypermetrope, yes, reduced], and next O16 [pre-presbyopic, hypermetrope, yes, reduced] 

and object O24 [presbyopic, hypermetrope, no, normal], but the objects belong to the same 
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class. Therefore, we propose using the flow network and Ant Colony Classification 

Algorithm, as a possibility to solve the described above problem. 

3 The proposed solution, experiments and results 

We do not know the criterion of division for the objects of described above dataset. 

Let's assume that we also do not know how many object groups should be. If we 

considering this type of problem, we can map the dataset of qualitative data as a bipartite 

graph, where vertices will represent possible values of categorical variables. The edges 

between the vertices in the bipartite graph should be related to the number of occurrences of 

the categorical data values (represented by given nodes). The bipartite graph may represent 

a flow network, but at the beginning with zero flows. This is illustrated in Figure 1. 

Fig. 1. The mapping of lenses dataset structure as a bipartite graph. 

The nodes A, B and C represent the values of the 'age' attribute - {young, pre-

presbyopic, presbyopic},  i.e. A corresponds to young, B corresponds to pre-presbyopic and 

C corresponds to presbyopic. The nodes D and E represent the values of the 'spectacle 

prescription' attribute - {myope, hypermetrope}. The nodes F and G represent the values of 

the 'astigmatism' attribute - {no, yes}. The nodes H and J represent the values of the ' tear-

prod-rate' attribute - {reduced, normal}, s in the flow network represents the source, and t - 

outlet. If we next apply the Ford-Fulkerson algorithm or its modified version, we will begin 

the process of saturating the edges of the transition from the source to the outlet. This is 

shown in Figures 2 and Figure 3. 

Fig. 2. The process of saturating the edges for a flow network (representing the lenses dataset). 
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Fig. 3. The maximum flow in the flow network. 

The maximum flow in our network is 24. However, the process of saturating individual 

transitions in the our flow network is important here. It is associated with transitions: s – C- 

E – G – I – t, s – D – E – G – I – t, s – D – E – G – H – t, s – B – E – G – H – t, s – B – E – 

F – I – t, s – B – D – G – I – t, s – B – D – F – I – t, s – A – E – F – I – t, s – A – D – F – H 

– t. The order in which the attributes are mapped is irrelevant because the weights of the A, 

B and C attributes are the same. The same situation is for the attributes D and E, F and G 

and H and I. The indicated paths are associated with the set of objects: {O24, O20, O19 , O15, 

O14, O12, O10, O6, O1}. This subset will be indicated as a decision collection. 

Let’s denote by Φ(N) the maximum flow associated with the node (where N represents A 

or B or C, etc.). Let’s denote by maxΦ(G) the maximum flow network. It will allow us to 

define the validity of a particular node N as (15): 

𝑣𝑎𝑙𝑖𝑑(𝑁) =
𝛷(𝑁)

𝑚𝑎𝑥𝛷(𝐺)
       (15) 

where vaild(N) is the validity of the rule attribute represented by N node. We have: 

valid(A) =0.33, valid(B) =0.33, valid(C) =0.33, valid(D) =0.5, valid(E) =0.5, valid(F) =0.5, 

valid(G) =0.5, valid(H) =0.5 and valid(I) =0.5. So, we can see that our vector consists of the 

attributes [A | B | C, D | E, F | G, H | I], but the most important for the decision process are 

pairs {H | I, F | G}, {H | I, D | E} and {F| G, D | E}. We will have three different groups of 

objects for each pair considered in the set of objects: {O24, O20, O19 , O15, O14, O12, O10, O6, 

O1}. For the pair of attributes {H | I, F | G} it will be: class1=[G-I], class2 = [G-H] and 

class3=[F-H]. In addition, the saturation of the last possible transition is associated only 

with one pair of values [F-H]. 

Let's examine how the proposed approach will work for another case and other types 

of objects, for example for the problem of grouping quantitative data. For this purpose, let's 

choose the most popular dataset – iris dataset. This collection has 150 objects with 4 

elements (sepal length, sepal width, petal length, petal width). The three expected classes 

are: Iris Setosa, Iris Versicolor and Iris Virginica. The sample dataset of Iris Setosa is 

shown in Table 3, Iris Versicolor - in Table 4 and Iris Virginica - in Table 5. However, let's 

assume also for this set, that we do not know how to group objects and what is the expected 

number of classes. All attributes of the iris dataset have real values. Therefore, they should 

be rounded to integers, according to the laws of mathematics. It will be a set of vertices of 

the bipartite graph. This is illustrated in Figure 4. 
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Table 3. The sample dataset of Iris Setosa 

Sepal 

length 
Sepal width Petal length Petal width 

5.0 3.5 1.6 0.5 

5.1 3.5 1.5 0.5 

5.4 3.9 1.7 0.4 

5.7 4.4 1.3 0.4 

 

Table 3. The sample dataset of Iris Versicolor 

Sepal 

length 
Sepal width Petal length Petal width 

7.0 3.2 4.7 1.4 

6.4 3.2 4.5 1.5 

5.5 2.3 4.9 1.5 

6.5 2.8 4.0 1.3 

 

Table 3. The sample dataset of Iris Virginica 

Sepal 

length 
Sepal width Petal length Petal width 

6.3 3.3 6.0 2.5 

5.8 2,7 5.1 2.9 

7.1 3.0 5.9 2.1 

6.3 2.9 5.6 1.8 

 

 
Fig. 4. The labelled iris dataset for flow network. 

For the examined set of objects (where A represents 4, B–5, C6, D–7, E–8, F-1, G-1, H-

4, I-1, J-2, K-3, L-4, M5, N-6, O-7, P-0, R-1, S-2 and T-3), we have: valid(T)=0.02, 
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valid(S)=0.406, valid(R)=0.25, valid(P)=0.32, etc. As we can see, the value of valid(T) is 

very small and differs significantly from other output nodes. Besides, valid(P) + valid(R) + 

valid(S)= 0.976. Therefore, we will consider a maximum of only three classes. The edge 

saturation process in this flow network returned a set of decision, in the form of nodes with 

the highest decision-making importance. These pairs are: {I, P}, {J, P}, {N, S}, {M, S}, {L, 

R}. Earlier attributes (A, B, C, D, etc.) are less important due to the significant weight P, R, 

S, I, M, N nodes. We have indicated decision rules and the knowledge about the number of 

classes. Then we can use any classification algorithm that uses the Euclidean distance 

(Figure 5). The carried out experiments showed that the proposed method returns the result 

which is 84.6% of the expected accuracy. 

 
 

 

 

 

 

 

 

 

 

 

 

Fig. 5. The classified iris dataset objects 

We have checked the proposed method of returning the decision-making collection also 

on the following datasets: car evaluation dataset, nursery dataset and dermatology dataset. 

We have achieved a result confirming the correctness of selecting the number of groups and 

a set of decision attributes, for each of these datasets. 

Thanks to the construction of a flow network for categorical data sets such as the lenses 

dataset, car evaluation dataset, nursery dataset and dermatology dataset, we have received 

data on the number of classes. Moreover, we have received the data set, from which a 

specific number of reference groups should be created (according to the validity of 

attributes). We next used the Ant Colony algorithm as a classifier. The ant based clustering 

algorithm used in our experiments is mainly based on the versions proposed by Lumer and 

Faieta [12]. The difference is the calculation of similarity to the reference objects. It is 

calculated based on the formula (16): 

𝑑(𝑥, 𝑦) =
𝑘−𝑤

𝑘
       (16) 

where k is the total number of variables but not related to the decision attribute pairs, and w 

is the number of variables whose value is the same for both objects (for attributes other than 

decision pairs), 

 The proposed approach allowed to obtain for the lenses dataset an accuracy of 94.7%,  

87.3% - for car evaluation dataset, 87.9 – for nursery dataset and 95.2% - for dermatology 

dataset. These results are fully acceptable. 
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3 Conclusions 

In the paper, we have examined the problem of clustering data categorical, for which there 

was no a priori knowledge about the expected number of groups. The decisive attribute was 

also unknown. The proposed use of flow networks and method is an option to solve this 

problem. The carried out experiments allowed to achieve satisfactory results. However, 

proposed approach requires further research for other data sets. 
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