Lacunary Statistical Convergence of Order alpha and Lacunary Strongly Summable Sequences of Order alpha of Generalized Difference Sequences

Mikail Et¹,*, Hacer Şengül², and Muhammed Çınar³
¹Department of Mathematics, Fırat University, Elazığ, Turkey
²Faculty of Education, Harran University, Osmanbey Campus, Şanlıurfa, Turkey
³Department of Mathematic Education, Muş Alparslan University, Muş, Turkey

Abstract. The notion of the \(\alpha \) th order \(\Delta^m_i - \) lacunary statistical convergence and \(\alpha \) th order lacunary strongly \((\Delta^m_i, p) \) – summable sequences was introduced by Altınok et al. [1]. They also gave significant inclusion correlation associated with the aforementioned sequence spaces. In this paper, our aim is to exploit some other important relations between the given notions.

1 Introduction

The idea of statistical convergence was firstly determined by Fast [12] and redefined independently by Schoenberg [28]. The concept of the density of the set of positive integers \(\mathbb{N} \) was used as the main motivation to create this idea. For any subset \(F \) of the \(\mathbb{N} \), the density of \(F \) is defined as

\[
\beta(F) = \lim_{n \to \infty} \frac{1}{n} \sum_{l=1}^{n} \omega_F(l)
\]

where \(\omega_F \) is the characteristic function of \(F \). It is needless to say that this definition is valid only for the existence of the limit. Let \(y = (y_l) \) be a given any sequence then it is statistically converged to \(R \), if for every \(\varepsilon > 0 \), \(\beta\{l \in \mathbb{N} : |y_l - R| \geq \varepsilon\} = 0 \). Furthermore, the relation and some application of this definition with the summability theory was presented by using the perspective of the sequence space by Çınar et al. ([3], [6], [30]), Connor [5], Fridy [14], Et et al. ([2], [11], [30]), Işik et al. ([17], [18], [19], [20], [21]). Gadjiev and Orhan [16] stated firstly the order of the sequence’s statistical

* Corresponding author: mikailet68@gmail.com
convergence. Based on this research, Çolak [4] studied the \(\alpha \) th order of the statistical convergence and \(\alpha \) th order of the strong \(p-Cesàro \) summability.

The lacunary sequence is defined by \(h_k = (l_k - l_{k-1}) \to \infty \) as \(k \to \infty \), where \(\gamma = (l_k) \) is an increasing sequence of integer. The interval denoted by \(\gamma \) is determined by \(I_k = (l_{k-1}, l_k] \) and \(q_k \) is the abbreviation of the ratio of \(\frac{l_k}{l_{k-1}} \) ([13], [15], [20], [29]). The introduction of the difference sequence space and its modification and extension were recently conducted by Kizmaz [23] and Et and Çolak [7]. Tripathy et al. [31] obtained the generalized shape of the difference sequences by considering the former difference sequences in the following form

\[
Y(\Delta^m_i) = \{ y = (y_i) : (\Delta^m_i y_i) \in Y \}
\]

where \(Y \) is regarded as a sequence, \(i \) and \(m \) are any two arbitrary positive integers, and

\[
\Delta^m_i y_i = \sum_{w=0}^{m} (-1)^w \binom{m}{w} y_{i+tw}.
\]

We rather choose to take \(Y(\Delta^m) \) in lieu of \(Y(\Delta^m_i) \) and \(\Delta^m_i y \) in lieu of \(\Delta^m_i y_i \) if we assume that \(i = 1 \). Other well known studies can be found in the following papers ([8], [9], [10], [17], [22], [25]).

2 Main Results

This section is the core of the study since it contains main results ans theorems.

Definition 2.1. [1] Let \(\gamma = (l_k) \) be a lacunary sequence such that \(m \) and \(i \) are choosen as arbitrarily non-negative integers and \(0 < \alpha \leq 1 \) be given. If a real number \(R \) is defined as follows

\[
\lim_{k \to \infty} \frac{1}{h_k^\alpha} \left| \left\{ l \in I_k : |\Delta^m_i y_i - R| \geq \varepsilon \right\} \right| = 0,
\]

then the sequence \(y = (y_i) \) is said to be \(\Delta^m_i \) - lacunary statistically convergent of order \(\alpha \) (or \(S^\alpha_\gamma (\Delta^m_i) \) - convergent).

Thus it is obvious that \(S^\alpha_\gamma (\Delta^m_i) - \lim y_i = R \). The set of all \(\Delta^m_i \) - lacunary statistically convergent sequences will be denoted by \(S^\alpha_\gamma (\Delta^m_i) \).

\(\Delta^m_i \) - lacunary statistical convergence is well defined for \(0 < \alpha \leq 1 \), but it is not well defined for \(\alpha > 1 \) in general. It is evidently true that every \(\Delta^m_i \) - convergent sequence is lacunary \(\Delta^m_i \) - statistically convergent of order \(\alpha \) \((0 < \alpha \leq 1) \), but the converse does not hold.

Definition 2.2. [1] Let \(\gamma = (l_k) \) be a lacunary sequence such that \(m \) and \(i \) are choosen as arbitrarily non-negative integers and \(\alpha, p > 0 \) be given. If a real number \(R \) is defined as follows
The lacunary sequence is defined by Definition 2.2. We rather choose to take an increasing sequence of integer. The interval denoted by \([10], \[17], \[22], \[25]\). Thus it is obvious that sequences in the following form is regarded as a sequence, \(i\) and \(m\) are any two arbitrary positive integers, and \(\alpha \leq i < m\). Let \(\gamma = (l_k)\) be a lacunary sequence such that \(\limsup_{k \to \infty} \frac{l_k}{l_{k-1}} < \infty\), then \(w^\alpha_\gamma(\Delta_i^m, p) \subseteq w^\alpha_\gamma(\Delta_i^m, p)\).

Theorem 2.3. Let \(0 < \alpha \leq 1\) and \(\gamma = (l_k)\) be a lacunary sequence. If \(\limsup_{k \to \infty} \frac{l_k}{l_{k-1}} < \infty\), then \(w^\alpha_\gamma(\Delta_i^m, p) \subseteq w^\alpha_\gamma(\Delta_i^m, p)\).

Theorem 2.4. Let \(\gamma = (l_k)\) and \(\gamma' = (s_k)\) be two lacunary sequences such that \(I_k \subseteq J_k\) for all \(k \in \mathbb{N}\) and let \(\alpha\) and \(c\) be fixed real numbers such that \(0 < \alpha \leq c \leq 1\),

(i) If \(\liminf_{k \to \infty} \frac{S_k^\alpha}{l_k^c} > 0\) \hspace{1cm} (1)

then \(S^\alpha_\gamma(\Delta_i^m) \subseteq S^\alpha_\gamma(\Delta_i^m)\),

(ii) If \(\lim_{k \to \infty} \frac{l_k}{g_k} = 1\) \hspace{1cm} (2)

then \(S^\alpha_\gamma(\Delta_i^m) \subseteq S^\alpha_\gamma(\Delta_i^m)\), where \(I_k = (l_{k-1}, l_k]\), \(J_k = (s_{k-1}, s_k]\), \(g_k = l_k - l_{k-1}\) and \(l_k = s_k - s_{k-1}\).

Theorem 2.5. Let \(\gamma = (l_k)\) and \(\gamma' = (s_k)\) be two lacunary sequences such that \(I_k \subseteq B_k\) for all \(k \in \mathbb{N}\), \(\alpha\) and \(c\) be fixed real numbers such that \(0 < \alpha \leq c \leq 1\) and \(0 < p < \infty\). Then we get

(i) If \(1\) holds then \(w^\alpha_\gamma(\Delta_i^m, p) \subseteq w^\alpha_\gamma(\Delta_i^m, p)\),

(ii) If \(2\) holds and \(y \in \ell_\infty(\Delta_i^m)\) then \(w^\alpha_\gamma(\Delta_i^m, p) \subseteq w^\alpha_\gamma(\Delta_i^m, p)\).

Theorem 2.6. Let \(\gamma = (l_k)\) and \(\gamma' = (s_k)\) be two lacunary sequences such that \(I_k \subseteq B_k\) for all \(k \in \mathbb{N}\), \(\alpha\) and \(c\) be fixed real numbers such that \(0 < \alpha \leq c \leq 1\) and \(0 < p < \infty\). Then
Let \((1)\) holds, if a sequence is strongly \(w_{\gamma}^{x}(\Delta_{i}^{m}, p)\)–summable to \(R\), then it is \(S_{\gamma}^{x}(\Delta_{i}^{m})\)– convergent to \(R\),

(ii) Let \((2)\) holds, if a \(\Delta_{i}^{m}\)–bounded sequence is \(S_{\gamma}^{x}(\Delta_{i}^{m})\)– convergent to \(R\) then it is strongly \(w_{\gamma}^{x}(\Delta_{i}^{m}, p)\)–summable to \(R\).

Theorem 2.7. If \(y \in w^{\alpha}(\Delta_{i}^{m}, p) \cap w_{\gamma}^{x}(\Delta_{i}^{m}, p)\) and \(\limsup_{k \to \infty} \frac{k}{l_{k}} < \infty\), then \(w_{\gamma}^{x}(\Delta_{i}^{m}, p) - \lim y_{i} = w^{\alpha}(\Delta_{i}^{m}, p) - \lim y_{i} = R\).

Proof. Let \(w_{\gamma}^{x}(\Delta_{i}^{m}, p) - \lim y_{i} = R\) and \(w^{\alpha}(\Delta_{i}^{m}, p) - \lim y_{i} = R'\), and suppose that \(R \neq R'\). Since \(\limsup_{k \to \infty} \frac{k}{l_{k}} < \infty\), from Theorem 2.3 we already know that \(w_{\gamma}^{x}(\Delta_{i}^{m}, p) \subseteq w^{\alpha}(\Delta_{i}^{m}, p)\). Since \((\Delta_{i}^{m} y - R') \in w_{\gamma, 0}^{x}(\Delta_{i}^{m}, p)\), it follows that \((\Delta_{i}^{m} y - R') \in w_{0}^{x}(\Delta_{i}^{m}, p)\) and therefore \(\frac{1}{t^{\alpha}} \sum_{b=1}^{t} |\Delta_{i}^{m} y_{b} - R' | \to 0\). Then we have

\[
\frac{1}{t^{\alpha}} \sum_{b=1}^{t} |\Delta_{i}^{m} y_{b} - R' | + \frac{1}{t^{\alpha}} \sum_{b=1}^{t} |\Delta_{i}^{m} y_{b} - R | \geq \frac{1}{t^{\alpha}} |R - R' | > 0,
\]

and hence \(R = R'\).

3 Results Related to Modulus Function

Nakano developed the mathematical background of the notion of the modulus \([26]\). Then this notion is used for the construction of some sequence spaces by Maddox \([24]\) and Ruckle \([27]\). Now, we present the inclusion relations among the sets of lacunary strongly \((\Delta_{i}^{m}, p)\)–summable sequences of order \(\alpha\) and \(\Delta_{i}^{m}\)–lacunary statistically convergent sequences of order \(\alpha\) with respect to the modulus function \(f\).

Definition 3.1. Let \(f\) be a modulus function, \(p = (p_{i})\) be a sequence of strictly positive real numbers and \(\alpha > 0\). Now we define

\[w_{\gamma}^{x}(\Delta_{i}^{m}, (p), f) = \left\{ y = (y_{i}) : \lim_{k \to \infty} \frac{1}{g_{k}^{\alpha} \sum_{l \in l_{k}}} [f(\Delta_{i}^{m} y_{l} - R)]^{p_{i}} = 0, \text{ for some } R \right\} \]

If \(y \in w_{\gamma}^{x}(\Delta_{i}^{m}, (p), f)\), then we say that \(y\) is strongly \(w_{\gamma}^{x}(\Delta_{i}^{m}, (p), f)\)–summable with respect to the modulus function \(f\). If \(p_{i} = p\) for all \(l \in \mathbb{N}\) and \(f(y) = y\) we shall write \(w_{\gamma}^{x}(\Delta_{i}^{m}, p)\) instead of \(w_{\gamma}^{x}(\Delta_{i}^{m}, (p), f)\) and in the special case \(f(y) = y\) we shall write \(w_{\gamma}^{x}(\Delta_{i}^{m}, p)\) instead of \(w_{\gamma}^{x}(\Delta_{i}^{m}, (p), f)\).
In the following theorems we shall assume that the sequence \((p_i) = p \) is bounded and \(0 < g = \inf_i p_i \leq p_i \leq \sup_i p_i = G < \infty \).

Theorem 3.2. Let \(m \) and \(i \) be two non-negative integers, \(\gamma = (l_k) \) be a lacunary sequence, \(\alpha \) and \(c \) be fixed real numbers such that \(0 < \alpha \leq c \leq 1 \) and \(f \) be a modulus function, then \(w_\gamma^\alpha \left(\Delta_i^m, (p), f \right) \subset S_\gamma^c \left(\Delta_i^m \right) \).

Proof. Let \(y \in w_\gamma^\alpha \left(\Delta_i^m, (p), f \right) \) and let \(\varepsilon > 0 \) be given and \(\Sigma_1 \) and \(\Sigma_2 \) denote the sums over \(l \in I_k, \quad \left| \Delta_i^m y_l - R \right| \geq \varepsilon \) and \(l \in I_k, \quad \left| \Delta_i^m y_l - R \right| < \varepsilon \), respectively. Since \(g_k^\alpha \leq g_k^c \) for each \(k \) we may write

\[
\frac{1}{g_k^\alpha} \sum_{l \in I_k} \left[f \left(\left| \Delta_i^m y_l - R \right| \right) \right]^{p_l} = \frac{1}{g_k^\alpha} \left[\sum_1 f \left(\left| \Delta_i^m y_l - R \right| \right) \right]^{p_l} + \sum_2 f \left(\left| \Delta_i^m y_l - R \right| \right)^{p_l} \\
\geq \frac{1}{g_k^c} \left[\sum_1 f \left(\left| \Delta_i^m y_l - R \right| \right) \right]^{p_l} + \sum_2 f \left(\left| \Delta_i^m y_l - R \right| \right)^{p_l} \\
\geq \frac{1}{g_k^c} \left| \left\{ l \in I_k : \left| \Delta_i^m y_l - R \right| \geq \varepsilon \right\} \right| \min \left(f (\varepsilon) \right)^G, f (\varepsilon)^G \right).
\]

Hence \(y \in S_\gamma^c \left(\Delta_i^m \right) \).

Theorem 3.3. Let \(\gamma = (l_k) \) be a lacunary sequence, \(m \) and \(i \) be two non-negative integers and \(0 < \alpha \leq 1 \). If \(\lim_{k \to \infty} \frac{g_k}{g_k^\alpha} = 1 \) and the modulus \(f \) is bounded, then \(S_\gamma^\alpha \left(\Delta_i^m \right) \subset w_\gamma^\alpha \left(\Delta_i^m, (p), f \right) \).

Proof. Let \(y \in S_\gamma^\alpha \left(\Delta_i^m \right) \) and suppose that \(f \) is bounded and \(\varepsilon > 0 \) be given. Since \(f \) is bounded there exists an integer \(K \) such that \(f (y) \leq K \), for all \(y \geq 0 \). Then we may write

\[
\frac{1}{g_k^\alpha} \sum_{l \in I_k} \left[f \left(\left| \Delta_i^m y_l - R \right| \right) \right]^{p_l} = \frac{1}{g_k^\alpha} \left[\sum_1 f \left(\left| \Delta_i^m y_l - R \right| \right) \right]^{p_l} + \sum_2 f \left(\left| \Delta_i^m y_l - R \right| \right)^{p_l} \\
\leq \max \left(K^G, K^G \right) \frac{1}{g_k^\alpha} \left| \left\{ l \in I_n : \left| \Delta_i^m y_l - R \right| \geq \varepsilon \right\} \right| \\
+ \frac{g_k}{g_k^\alpha} \max \left(f (\varepsilon)^G, f (\varepsilon)^G \right).
\]

and so \(w_\gamma^\alpha \left(\Delta_i^m, (p), f \right) \).
Theorem 3.4. Let $\gamma = (l_k)$ be a lacunary sequence, m and i be two non-negative integers and $0 < \alpha \leq 1$. If $\gamma = (y_j)$ is strongly $w_\gamma^\alpha (\Delta_i^m, (p), f)$– summable to R with respect to the modulus function f and $\lim p_j > 0$, then $w_\gamma^\alpha (\Delta_i^m, (p), f) \lim y_j = R$ unique.

Proof. Omitted.

Theorem 3.5. Let $\gamma = (l_k)$ be a lacunary sequence, m and i be two non-negative integers and $0 < \alpha \leq 1$. The sequence spaces $w_\gamma^\alpha (\Delta_i^m, p), S_\gamma^\alpha (\Delta_i^m)$ and $w_\gamma^\alpha (\Delta_i^m, (p), f)$ are neither solid nor symmetric, nor sequence algebras for $m \geq 1$.

Proof. Let $\gamma = (2^k)$ and $i = 1$, then $(y_j) = (l^{m-1}) \in w_\gamma^\alpha (\Delta_i^m, p)$ but $(\alpha_i y_j) \notin w_\gamma^\alpha (\Delta_i^m, p)$ when $\alpha_i = (-1)^l$ for all $l \in \mathbb{N}$. Hence $w_\gamma^\alpha (\Delta_i^m, p)$ is not solid. The other cases can be proved on considering similar examples.

References

5. J.S. Connor, Analysis 8, 47-63 (1988)
21. M. Işık, K.E. Akbaş, ITM Web of Conferences 13, 01024 (2017); doi: 10.1051/itmconf/20171301024
The other cases can be proved on considering similar examples.

Proof. Let

\[f(\gamma, \Delta) = \alpha \quad \text{and} \quad \gamma \Delta = (\gamma, \Delta) \]

\[\alpha \leq 0 \]

References