Findings Annihilator(s) via Fault Injection Attack (FIA) on Boolean Function of Grain v0

Muhammad Rezal Kamel Ariffin1, 2, Wan Zariman Omar@Othman1,3,* Solahuddin Shamsuddin3, Zahari Mahad1, and Suhairi Mohd Jawi3

1 Laboratory of Cryptography, Analysis and Structure, Institute for Mathematical Research, Universiti Putra Malaysia
2 Department of Mathematics, Faculty of Science, Universiti Putra Malaysia (UPM), Selangor, Malaysia
3 CyberSecurity Malaysia

Abstract. In developing stream cipher algorithms, Boolean function is one of vital elements. Attacks on LFSR-based stream cipher is the challenge for the cryptanalyst to get low-degree annihilator(s). In this paper, we proposed Fault Injection Attack (FIA) on Boolean function of Grain v0, which is the original variant of Grain family algorithm. Fault injection attack (FIA) is used on Boolean function of Grain v0 by replacing certain coefficient with value of one (1) which results in the generation of several injected Boolean functions. With these injected Boolean function, we proceed using HAO’s algorithm to find annihilator(s). As a result, we obtained several new annihilator(s) of Grain v0’s Boolean function. This new annihilator(s) will be utilized to launch algebraic attacks upon Grain v0.

1. Introduction

Cryptography is science that incorporates both cryptography and cryptanalysis. Cryptography is divided into two types, which are symmetric cryptography and asymmetric cryptography. In symmetric cryptography, only one key namely secret key will be used to encrypting and decrypting the data. Meanwhile for the asymmetric cryptography, a key pair will be used to encrypting and decrypting the data which namely public key and private key. The symmetric cryptography can be divided into two types symmetric cipher, which are block cipher and stream cipher. In stream cipher, we have three (3) class [1];

I. The one-time pad
1. Definition Let Vernam cipher over the binary alphabet is defined by \(c_i = m_i \oplus k_i \) for \(i = 1,2,3,... \), where \(m_i \)

II. Synchronous Stream Ciphers
2. Definition A synchronous stream cipher is one in which the keystream is generated independently of the plaintext message and of the ciphertext.

In a synchronous stream cipher a stream of pseudo-random digits is generated independently of the plaintext and ciphertext messages, and then combined with the plaintext (to encrypt) or the ciphertext (to decrypt) (refer to Figure 1). In the most common form, binary digits are used (bits), and the keystream is combined with the plaintext using the exclusive or operation (XoR). This is termed a binary additive stream cipher (refer to Figure 2).

Figure 1: General model of a synchronous stream cipher

Figure 2: General model of a binary additive stream cipher (above)

In a synchronous stream cipher, the sender and receiver must be exactly in step for decryption to be successful. If digits are added or removed from the message during transmission, synchronisation is lost. To restore synchronisation, various offsets can be tried systematically to obtain the correct decryption. Another approach is to tag the ciphertext with markers at regular points in the output.

III. Self-synchronous stream ciphers
3. Definition A self-synchronous or asynchronous stream cipher is one in which the keystream is generated as function of the key and a fixed number of previous ciphertext digits.

The encryption function of self-synchronous stream cipher can be described by the equations:

\[\sigma_i = (c_{i+1}, c_{i+2}, \ldots, c_{i+\ell}) \]
\[z_i = g(\sigma_i, k) \]
\[c_i = h(z_i, m_i) \]

where \(\sigma_i = (c_{i+1}, c_{i+2}, \ldots, c_{i+\ell}) \) is the initial state, \(k \) (non-secret) \(g \) is the function which produces the keystream \(z \), and \(h \) is the output function which combines the keystream and plaintext \(m \) to produces ciphertext \(c \). Please refer to Figure 3.

* Corresponding author: wanzariman@cybersecurity.my

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).
2. Description of Grain v0

Stream cipher can be classified into two types, which are synchronous stream ciphers, and asynchronous stream ciphers also known as self-synchronous stream ciphers.

Grain is a stream cipher primitive that was designed by Hell et al in 2007 to be very easy and small to implement in hardware. Grain v0 is a bit oriented synchronous stream cipher and the key stream is generated independently from plain text and was designed based on two shift registers. Two (1) with linear feedback shift register (LFSR) and one with nonlinear feedback shift register (NFSR). Both shift registers are 80-bits, the key size is 80-bits and the IV size is 64-bits. Grain v0 consists of LFSR denoted by

\[s_i, s_{i+1}, \ldots, s_{i+79} \]

and NFSR is denoted by

\[b_i, b_{i+1}, \ldots, b_{i+79} \]

Meanwhile LFSR function denoted as

\[f(x) = f_1 + x + x^2 + x^3 + x^4 + x^5 \]

and to remove any possible ambiguity, update function of the LFSR is defined as:

\[s_{i+80} = s_{i+62} + s_{i+51} + s_{i+38} + s_{i+23} + s_{i+13} + s_{i} \]

NFSR of Grain v0, \(g(x) \) is defined as:

\[g(x) = 1 + x + x^4 + x^7 + x^8 + x^9 + x^{10} + x^{11} + x^{12} + x^{13} + x^{14} + x^{15} + x^{16} + x^{17} + x^{18} + x^{19} \]

and to remove any possible ambiguity, update function of the NFSR is defined as:

\[h_{i+80} = h_{i+62} + h_{i+51} + h_{i+38} + h_{i+23} + h_{i+13} + h_{i} + \]

\[h_{i+80} = h_{i+62} + h_{i+51} + h_{i+38} + h_{i+23} + h_{i+13} + h_{i} \]

For each type of ciphers, it has its own types of attacks. For example of the symmetric stream cipher, there are many types of attacks such as:

1. Algebraic Attack
2. Exhaustive Search Attack
3. Correlation Attack
4. Fault Attack (including Fault Injection)
5. Distinguishing Attack
6. Chosen-IV attack
7. Slide Attack
8. Cube Attack
9. Guess and Determine Attack

In this paper, we will focus more on symmetric stream cipher namely Fault Injection Attack (FIA), which is specifically for Boolean function of stream cipher algorithm.

3. Basic study on Boolean function

4. Definition (Boolean function) A Boolean function \(f \) on \(n \) variables is a mapping from \([0, 1]^n \to [0, 1]\).

5. Definition (Algebraic normal form (ANF) of Boolean function) Every Boolean function \(f \) can be expressed as a multivariate polynomial over \(\mathbb{F}_2 \). This polynomial is known as algebraic normal form of the Boolean function \(h \). The general form of algebraic normal form of \(h \) is given by:

\[f(x_1, \ldots, x_n) = a_0 + \bigoplus_{n \geq 1} a_n x^n \]

6. Degree (Degree of Boolean function) Degree of a Boolean function \(h \) is defined as \(\deg(h) \) - number of variables in the highest order product term in the algebraic normal form of \(h \). Functions of degree at most one are called affine function. An affine function with constant term equal to zero is called linear function. For example, Grain v0’s Boolean function has \(\deg(h) = 3 \).

7. Definition (An annihilator of a Boolean function) A non-zero Boolean function \(g \) of \(n \)-variables is said to be an annihilator of a Boolean function \(f \) if \(g(f(X)) = 0, \forall X \in [0, 1]^n \).

4. Definition of our Fault Injection Attack (FIA) on Grain v0’s Boolean Function

The attacker is assumed able to inject exactly one bit (1 or 0) in any one of active coefficients in the Boolean function [3][4]. In Grain v0, Boolean function is defined as:

\[h(x) = x_1 + x_4 + x_5 x_7 + x_8 x_9 + x_9 x_10 x_12 + x_10 x_12 x_13 + x_9 x_12 + x_10 x_12 + x_9 x_12 x_13 + x_9 x_12 + x_9 x_12 + x_9 x_12 + x_9 x_12 \]

This paper will inject value of one (1) in each active coefficients of Grain v0’s Boolean function. For example, in Grain v0’s Boolean function, we get nineteen (19) active coefficients such as below:

1. \(x_9 \)
2. \(x_1 \)
3. \(x_2 \)
4. \(x_5 \)
5. HAO’s Method

From Courtois and Meier, the key step of algebraic attack (stream cipher) is to build low-degree over-defined equations, and this method can be enhanced to find low-degree annihilator(s) of combination of the keystream generator [5]. In HAO’s paper, there is three (3) algorithms/methods to find annihilator(s) of the given function [6].

In this paper, we will use algorithm 2 in HAO’s algorithm to find annihilator of the injected Grain v0’s Boolean function. We will consider all the n-variable non-zero monomials of degree ≤ d, denoted by $A_d = \{1, x_1, x_2, \ldots, x_n, x_1x_2, x_1x_3, x_1x_4, x_2x_3, x_2x_4, \ldots, x_{n-1}x_n, \ldots, x_{n-d+1}x_{n-d+2}\}$. Let $V^* = \{0,1\}^n$. For any $h \in B_n$, we denote it by a $2^n \times \text{tuple vector} \{h_1, h_2, h_3, \ldots, h_n\}$.

For example, Boolean function for Grain v0 is defined as:

$h(x) = x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 + x_9 + x_{10} + x_{11} + x_{12}$

Then, we denote $C = \{p|h | p \in A_d\}$ = \{hp_1, hp_2, \ldots, hp_s\}. For any $h \in B_n$, we denote it by a $2^n \times \text{tuple vector} \{h_1, h_2, h_3, \ldots, h_n\}$.

Algorithm 2 (as in [6]) is defined as below:

Algorithm Given a n-variable Boolean function h, find all annihilator(s) of h with degree $\leq d$.

Step 1: Construct matrix $M_d(h)$.

Step 2: Convert $M_d(h)$ into row ladder matrix $M_d(h)^{\ast}$ using Gaussian elimination.

Step 3: If there exists zero-rows in $M_d(h)^{\ast}$, it certainly exists a annihilator g of h, and obtain g by using the inverse process of Step 2, or else, there is no annihilator of h with degree $\leq d$.

Theorem 1 $|C| < |A_d|$ ⇒ There exists at least one (1) annihilator of h with degree $\leq d$.

Proof: If $|C| < |A_d|$, then $3 \geq |A_d|$. Then, we denote $C = \{1, x_1, x_2, \ldots, x_n\}$. From all $A_d = \{1, x_1, x_2, \ldots, x_n\}$, we can get annihilator g of h with degree $\leq d$. Therefore, there exists annihilator of h with degree $\leq d$.

Theorem 2 There exists annihilator h with degree $\leq d$ implies $\text{rank}(M_d(h)) < |A_d|$.

Proof: There exists annihilator g of h with degree $\leq d$ implies $h(xg(x)) = 0$ for any $x \in \{0,1\}^n$. The sum of rows in $M_d(h)$ corresponding to the terms of g is zero⇒ $\text{rank}(M_d(h)) = |A_d|$. Therefore, there exists annihilator of h with degree $\leq d$.

6. Analysis

The adversary is assumed able to inject exactly one bit (bit 1) in any one of the active coefficients in the Boolean function. In this paper, we will inject value of one (bit-1) into Grain v0’s Boolean function. All new injected Boolean function is defined as Table 1:

<table>
<thead>
<tr>
<th>No. $(h(x))$</th>
<th>Coefficients</th>
<th>Injected Boolean Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$x_1 + x_2 + x_3 + x_4$</td>
<td>$h_1 + x_1 + x_2 + x_3 + x_4$</td>
</tr>
<tr>
<td>1</td>
<td>$x_1 + x_2$</td>
<td>$h_2 + x_1 + x_2$</td>
</tr>
<tr>
<td>2</td>
<td>$x_1 + x_3 + x_4$</td>
<td>$h_3 + x_1 + x_3 + x_4$</td>
</tr>
<tr>
<td>3</td>
<td>$x_1 + x_2 + x_3 + x_4$</td>
<td>$h_4 + x_1 + x_2 + x_3 + x_4$</td>
</tr>
</tbody>
</table>

Table 1: List of Injected Grain v0’s Boolean function (above).
\[\text{Table 2: List of Injected Grain v0's in vector (above).} \]

From Table 2, value of \(h(x) \) in vector will be used to compute value of \(C'=\{x|h \in A_1\} \). We construct matrix \(M(h) \) by output of \(C \) for each injected Boolean function and we get \([15x31]\) matrices. Table 3 show output of \(M(h) \).

<table>
<thead>
<tr>
<th>(h(x))</th>
<th>(M(h))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>![Matrix Image]</td>
</tr>
<tr>
<td>1</td>
<td>![Matrix Image]</td>
</tr>
<tr>
<td>2</td>
<td>![Matrix Image]</td>
</tr>
</tbody>
</table>
From Table 3, we convert $M(h)$ into row ladder matrix - $M(h)^*$ using Gaussian elimination. For this purpose, we are using Maple 18 (with command: ReducedRowEchelonForm(s)). As for the output of $M(h)^*$ show as in Table 4.

<table>
<thead>
<tr>
<th>$h(s)$</th>
<th>$M(h)^*$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000101100000001100000011000100</td>
</tr>
<tr>
<td>1</td>
<td>010000000011000000111000110010</td>
</tr>
<tr>
<td>2</td>
<td>00000110001000010000000011000</td>
</tr>
<tr>
<td>3</td>
<td>00001100000100000011100001000</td>
</tr>
<tr>
<td>4</td>
<td>00000100000011000000001100000</td>
</tr>
<tr>
<td>5</td>
<td>000000100000001000000000001000</td>
</tr>
<tr>
<td>6</td>
<td>000000010000000000000000000000</td>
</tr>
</tbody>
</table>

Table 3: Output of $M(h)^*$ (above).
Table 4: Output of Md(h)* (after Gaussian Elimination) (above).

7. Result

From Table 4, we can get that original Boolean function of Grain v_0 do not produce any zero row in $M_d(h)^*$, that mean, it do not have any annihilator. Meanwhile only six (6) active coefficients in injected Boolean function produced zero row in $M_d(h)^*$. All involved coefficients are as in Table 5. We bold the row zero of each $M_d(h)^*$ in Table 4. As for the result, all involved coefficients are as in Table 5 and we manage to obtained several annihilators using Fault Injection Attack (FAI) with HAO’s algorithm.
Table 5: Output of Zero row (above).

From step 3 in Algorithm 2, we manage to get annihilator via injection of coefficient $x_1, x_2,$ and x_4. Refer to Table 6 below:

<table>
<thead>
<tr>
<th>Coefficients</th>
<th>Annihilator(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>$x_2 + x_1x_3 + x_1x_4 + x_2x_4$</td>
</tr>
<tr>
<td>x_2</td>
<td>$x_2x_4 + x_2x_5$</td>
</tr>
<tr>
<td>x_4</td>
<td>$x_3x_4 + x_2x_4$</td>
</tr>
</tbody>
</table>

Table 6: Output of annihilator(s) (above).

For the result comparison in this paper, by using only HAO’s algorithm we do not obtain any annihilator. However, when we are using HAO’s algorithm + FIA, we manage to obtain at least one (1) annihilator. Refer to Table 7 below:

<table>
<thead>
<tr>
<th>Annihilator(s)</th>
<th>HAO’s</th>
<th>HAO’s + FIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Annihilator(s)</td>
<td>ZERO ANNIHILATOR</td>
<td>THREE ANNIHILATORS</td>
</tr>
<tr>
<td>Advantage(s)</td>
<td>NO</td>
<td>REDUCE DEGREE OF ALGEBRAIC ATTACK</td>
</tr>
</tbody>
</table>

Table 7: Comparison between finding annihilator(s) using only HAO’s algorithm and FIA+HAO’s algorithm (above).

8. Conclusion

According to HAO, their proposed algorithm can effectively calculate all low-degree annihilators of both h and $h+1$ and subsequently construct low-degree overdefined algebraic equations. But from this study, it has been found that annihilator(s) of Grain’s Boolean function can be obtained only by using Fault Injection Attack (FIA) with HAO’s algorithm as shown in Table 6. However, the same algorithm without FIA could not retrieve any annihilator of original Grain v0’s Boolean function. This finding has concluded that HAO’s algorithm is not applicable in all Boolean function based stream cipher to find an annihilator. So with our attack (HAO’s algorithm + FIA), it managed to obtained annihilator(s) and help cryptanalyst to do an algebraic attack to the Boolean function based stream cipher. We also do a comparison between of this two (2) methodologies as shown in Table 7. This low-degree annihilator(s) will used to construct low-degree overdefined algebraic equations and to be utilized in algebraic attacks. For future research, we will using the same methodology to do analysis and attack to another Boolean function based stream cipher.
References

