Sliding signal processing in telecommunication networks based on two-dimensional discrete Fourier transform

Vladimir Ponomarev¹, Olga Ponomareva¹,* Alexey Ponomarev¹, and Natalya Smirnova²

¹Kalashnikov Izhevsk State Technical University, Studencheskay str., 7, Izhevsk, Udmurt Republic, 426069, Russian Federation
²Sevastopol State University, Universitetskaya str., 33, Sevastopol, 299053, Russian Federation

Abstract. A method of vertical sliding processing of two-dimensional discrete signals in the spatial frequency domain is proposed — a method of fast vertically sliding two-dimensional discrete Fourier transform. The mathematical representation of the two-dimensional discrete Fourier transform in algebraic and matrix form is considered. An effective method of vertically sliding two-dimensional discrete Fourier transform is proposed. The algorithm developed in the framework of the proposed method allows calculating the coefficients (bins) of this transformation in real time.

1 Introduction

It is difficult to overestimate the role and place of digital spectral processing of discrete one-dimensional (1-D) and two-dimensional (2-D) signals in telecommunication networks (telephone, computer, television networks and radio networks). The importance and relevance of the development and improvement of the methods of digital spectral processing of 1-D and 2-D signals is increasing due to the creation of telecommunication universal multiservice networks that can equally effectively transmit any type of information: data, sound and video.

The classical method of spatial-frequency processing of two-dimensional discrete signals is the 1-D and 2-D discrete Fourier transform (DFT), which allows to obtain a 1-D and 2-D frequency spectrum [1-13]. At the same time, there are a number of applications [9-12] where it is necessary to find the values of the frequency spectrum not at all 1-D and 2-D frequencies, but at a subset of them. In this case, the application of the full version of 1-D and 2-D DFT, even on the basis of the fast Fourier transform (FFT), becomes ineffective, since most of the obtained 1-D and 2-D DFT coefficients are not used. The solution to this problem for 1-D signals is given in [9].

The article discusses the solution of this problem for 2-D signals, introduces the concept of moving spatial-frequency processing based on 2-D DFT. Specifically, the vertical spatial-frequency processing of 2-D signals is considered.

* Corresponding author: ponnva@mail.ru

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).
2 Direct two-dimensional discrete Fourier transform

Suppose we are given a discrete two-dimensional signal \(x(n_1,n_2) \) in the form of a two-dimensional sequence of finite length \(0 \leq n_1 \leq (N_1 - 1) \) and \(0 \leq n_2 \leq (N_2 - 1) \) or with a matrix of size \(n_1 \times n_2 \) in a rectangular reference zone (specifically on a plane).

The direct two-dimensional discrete Fourier transform (2-D DFT) of a two-dimensional signal \(x(n_1,n_2) \) is a special case of a direct two-dimensional z-transform:

\[
S_{N_1,N_2}(k_1,k_2) = X(z_1,z_2) \mid z_1 = W_{N_1}^{k_1}, z_2 = W_{N_2}^{k_2};
\]

and can be specified both in algebraic and in matrix form.

Algebraic form:

\[
S_{N_1,N_2}(k_1,k_2) = \frac{1}{N_1 \cdot N_2} \sum_{n_1=0}^{N_1-1} \sum_{n_2=0}^{N_2-1} x(n_1,n_2) \exp \left[-j2\pi \left(\frac{k_1 n_1}{N_1} + \frac{k_2 n_2}{N_2} \right) \right] = \frac{1}{N_1 \cdot N_2} \sum_{n_1=0}^{N_1-1} \sum_{n_2=0}^{N_2-1} x(n_1,n_2) \cdot W_{N_1}^{k_1 n_1} \cdot W_{N_2}^{k_2 n_2};
\]

where \(k_1 = 0,(N_1 - 1) \), \(k_2 = 0,(N_2 - 1) \) are spatial frequencies; \(x(n_1,n_2) \) – two-dimensional signal; \(n_1 = 0,N_1 - 1 \), \(n_2 = 0,N_2 - 1 \);

\(W_{N_2}^{k_2 n_2} = \exp(-j \frac{2\pi}{N_2} (k_2 n_2)) \); \(S_{N_1,N_2}(k_1,k_2) \) – coefficients (bins) of 2-D DFT (two-dimensional vector spatial-frequency spectrum).

Matrix form:

\[
S_{N_1\times N_2} = \frac{1}{N_1 \cdot N_2} F_{N_1\times N_1}^{(2)} \cdot X_{N_1\times N_2} \cdot F_{N_2\times N_2}^{(1)};
\]

where

\[
X_{N_1\times N_2} = \begin{bmatrix}
0 & 1 & \cdots & (N_2 - 1) \\
0 & x(0,0) & x(0,1) & \cdots & x(0,N_2 - 1) \\
1 & x(1,0) & x(1,1) & \cdots & x(1,N_2 - 1) \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
(N_1 - 1) & x(N_1 - 1,0) & x(N_1 - 1,1) & \cdots & x(N_1 - 1,N_2 - 1)
\end{bmatrix};
\]

\[
F_{N_1\times N_1}^{(2)} = \begin{bmatrix}
0 & 1 & \cdots & (N_2 - 1) \\
0 & W_{N_2}^{0(0)} & W_{N_2}^{0(1)} & \cdots & W_{N_2}^{0(N_2 - 1)} \\
1 & W_{N_2}^{1(0)} & W_{N_2}^{1(1)} & \cdots & W_{N_2}^{1(N_2 - 1)} \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
(N_1 - 1) & W_{N_2}^{(N_1 - 1)(0)} & W_{N_2}^{(N_1 - 1)(1)} & \cdots & W_{N_2}^{(N_1 - 1)(N_2 - 1)}
\end{bmatrix};
\]

\[
F_{N_2\times N_2}^{(1)} = \begin{bmatrix}
0 & 1 & \cdots & (N_2 - 1) \\
0 & W_{N_2}^{0(N_1 - 1)} & W_{N_2}^{0(N_2 - 1)} & \cdots & W_{N_2}^{0(N_2 - 1)(N_2 - 1)} \\
1 & W_{N_2}^{1(0)} & W_{N_2}^{1(N_2 - 1)} & \cdots & W_{N_2}^{1(N_2 - 1)(N_2 - 1)} \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
(N_2 - 1) & W_{N_2}^{(N_2 - 1)(0)} & W_{N_2}^{(N_2 - 1)(1)} & \cdots & W_{N_2}^{(N_2 - 1)(N_2 - 1)}
\end{bmatrix}.
\]
Hereinafter there is no loss of generality in omitting the multiplier $1/(N_1 \cdot N_2)$ in (3).

Due to the fact that for the product of the matrices (3) holds the associative property:

$$S_{N_1 \times N_2} = F_{N_1 \times N_1}^{(2)} \cdot X_{N_1 \times N_2} \cdot F_{N_2 \times N_2}^{(1)} = F_{N_1 \times N_1}^{(2)} \cdot X_{N_1 \times N_2} \cdot F_{N_2 \times N_2}^{(1)}$$

and the 2-D DFT core is separable, then, according to (7), you can get the 2-D DFT bins $S_{N_1 \times N_2} , k_1 = 0,(N_1 - 1)$, $k_2 = 0,(N_2 - 1)$, in two ways, each consists of two stages.

It is easy to find out that for obtaining $S_{N_1 \times N_2}(k_1,k_2) \quad k_1 = 0,(N_1 - 1)$, $k_2 = 0,(N_2 - 1)$ it is necessary to perform $N_1 \cdot N_2$ one-dimensional 2-D DFTs, for calculating which the algorithms of the fast Fourier transform - FFT can be effectively applied.

2. Sliding spatial-frequency processing of discrete signals

Let us consider the spatial-frequency processing of two-dimensional discrete signals in a sliding spatial analysis window. In contrast to the one-dimensional case for the two-dimensional case, there are 4 possible ways of sliding of the spatial analysis window on the original two-dimensional discrete signal:

- 1st way consists of horizontal right shift (HS+) and horizontal left shift (HS-);
- 2nd way consists of vertical shift up (VS+) and vertical shift down (VS-);
- 3rd way consists of right diagonal shift up (RDS+) and right diagonal shift down (RDS-);
- 4th way consists of left diagonal shift up (LDS+) and left diagonal shift down (LDS-).

Fig. 1 shows a star diagram illustrating 4 types of sliding of a spatial analysis window using a discrete two-dimensional signal and examples of its shift.

![Star Diagram Illustrating 4 Kinds of Sliding of a Spatial Window](https://example.com/star-diagram.png)

Fig. 1. The star chart illustrating 4 kinds of sliding of a spatial window.
Suppose we need to find the coefficient (bin) of a two-dimensional discrete transform $S_{N_1, N_2}(k_1, k_2)$ at the spatial frequency (k_1, k_2) from the samples of the input signal $x(n_1, n_2)$. In this case, the matrix equation (3) is converted into the form:

$$S(k_1, k_2) = [W_{N_1}^{0k_1}, W_{N_1}^{1k_1}, \ldots, W_{N_1}^{N_1(N_1-1)}] \cdot X_{N_1 \times N_2}\cdot \left[\begin{array}{c} W_{N_2}^{0k_2} \\ W_{N_2}^{1k_2} \\ \vdots \\ W_{N_2}^{N_2(N_2-1)}k_2 \end{array} \right]. \quad (8)$$

At the first stage, according to (8), we multiply the basis function of frequency k_2 and duration N_2 by a matrix of a discrete two-dimensional signal $x(n_1, n_2)$. As a result, we obtain a columned matrix $S_{N_2}(n_1, k_2)$ of size N_2, having spent on this procedure $N_2 \cdot N_1$ complex multiplications and $(N_2 - 1) \cdot N_1$ complex additions. Further, at the second stage, we multiply the basis function of frequency k_1 and duration N_1 by a columned matrix of size obtained at the first stage, having spent on this procedure N_1 complex multiplications and $(N_1 - 1)$ complex additions.

Thus, it is necessary to expend $N_2 \cdot (N_1 + 1)$ complex multiplications and $(N_2 - 1) \cdot (N_1 + 1)$ complex additions to obtain one coefficient of a two-dimensional discrete transform $S_{N_1, N_2}(k_1, k_2)$ at spatial frequency (k_1, k_2). Considering that performing one complex multiplication requires four real multiplications and two real additions, and one complex addition of two real additions, it is necessary to spend $4 \cdot N_1 \cdot (N_2 + 1)$ real multiplications and $4 \cdot N_1 N_2 + 2 \cdot (N_1 - 1)$ real additions to obtain the value of one coefficient of a two-dimensional discrete transformation $S_{N_1, N_2}(k_1, k_2)$.

Note that this amount of computation needs to be performed at each shift of a two-dimensional spatial analysis window using a two-dimensional signal. At the same time, it is easy to see that for any kind of shift of a two-dimensional signal a large number of values $X_{N_1 \times N_2}$ of the complex matrix in the spatial analysis window remains unchanged.

Note that the shift of the spatial window along a two-dimensional discrete signal can be considered as a shift of a two-dimensional discrete signal in the spatial analysis window in the opposite direction to the movement of the spatial window.

3. The algorithm of vertical sliding processing of 2-D signals based on 2-D DFT

Let us need to find one coefficient (bin) of a two-dimensional discrete transformation $S_{N_1, N_2}(k_1, k_2)$ at a spatial frequency (m_1, m_2) from the samples of the input signal $x(n_1, n_2)$. To obtain a bin, matrix equation (8) is converted to the form:

$$S_{N_1, N_2}(m_1, m_2) = [W_{N_1}^{m_10}, W_{N_1}^{m_11}, \ldots, W_{N_1}^{m_1(N_1-1)}] \cdot X_{N_1 \times N_2} \cdot \left[W_{N_2}^{m_20}, W_{N_2}^{m_21}, \ldots, W_{N_2}^{m_2(N_2-1)} \right]^T; \quad (9)$$

where T is the transpose symbol.
The sequence of operations in the algorithm of vertical sliding processing of 2-D signals:

1. Find the column matrix \(S_{N_2}(n_1,m_2) \) by size \(N_1 \), by multiplying the basis function duration \(N_2 \) and frequency \(m_2 \) on a matrix of a discrete two-dimensional signal \(x(n_1,n_2) \).

2. Remember the column matrix \(S_{N_2}(n_1,m_2) \) as a column matrix \(S_{N_2}^{(n, m)}(0) \).

3. Calculate the 2-D coefficient of the discrete transform \(S_{N_1,N_2}(m_1,m_2) \) by multiplying the column matrix \(S_{N_2}(n_1,m_2) \) by a basis function of duration \(N_1 \) and frequency \(m_1 \). This stage ends the output of the algorithm to the operating mode.

4. Carry out the VS – shift of the discrete spatial window by one sample down the two-dimensional signal \(x(n_1,n_2) \) and obtain the matrix of the discrete two-dimensional signal \(x[(n_1-1),n_2] \).

5. Form a column matrix according to the ratio;

\[
S_{N_2}^{(n, m)}(-1) = S_{N_2}^{((n+1), m)}(0); \quad n_1 = 0, N_1 - 2
\]

6. Calculate the coefficient value of a two-dimensional discrete transformation \(S_{N_1,N_2}(m_1,m_2) \) by multiplying the column matrix \(S_{N_2}^{(n, m)}(-1) \) by a basis function of duration \(N_1 \) and frequency \(m_1 \).

7. Go to the implementation of paragraph No. 4.

4. Conclusion

The effectiveness of the proposed algorithm for vertical sliding processing of two-dimensional discrete signals in the spatial frequency domain in comparison with the standard method for obtaining the coefficient of two-dimensional discrete transformation \(S_{N_1,N_2}(m_1,m_2) \):

- the standard algorithm (8) of the sliding processing of two-dimensional discrete signals in the space-frequency domain requires to obtain a coefficient \(S_{N_1,N_2}(m_1,m_2) \) of two-dimensional discrete conversion of \(4 \cdot N_1 \cdot (N_2 + 1) \) real multiplications \(4 \cdot N_1 \cdot N_2 + 2 \cdot (N_1 - 1) \) of real additions;
- the developed algorithm for the sliding processing of two-dimensional discrete signals in the space-frequency region after reaching the operating mode requires \(4 \cdot (N_1 + N_2) \) real multiplications and \(4 \cdot (N_1 + N_2 - 1) \) real additions to obtain a two-dimensional discrete transform coefficient \(S_{N_1,N_2}(m_1,m_2) \).

References

