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Abstract. In this paper we consider a three-dimensional nonlinear system
which models the dynamics of a population during an epidemic disease. The
considered model is a SIS-type system in which a recovered individual automat-
ically becomes a susceptible one. We take into account the births and deaths,
and we also consider that susceptible individuals are divided into two groups:
non-vaccinated and vaccinated. In addition, we assume a medical scenario in
which vaccinated people take a special measure to quarantine their newborns.
We study the stability of the considered system. Numerical simulations point
out the behavior of the considered population.

1 Introduction

Concerns for communicable diseases, such as tuberculosis, malaria, and influenza, have ex-
isted since ancient times, such as the writings of Aristotle (384 BC-322 BC). In [3] the authors
state that the existence of microorganisms was demonstrated by van Leeuwenhoek (1632-
1723). The germ theory of disease, introduced by Jacob Henle (1809-1885), was developed
by Robert Koch (1843-1910), Louis Pasteur (1822-1875), and Joseph Lister (1827–1912) in
the latter part of the nineteenth century and the early part of the twentieth century. The first
contributions in modern mathematical epidemiology were attributed to P.D. En’ko between
1873 and 1894 (see [6, 7]). Between 1900 and 1935, in a lot of books and articles, such as
[11–13], A.G. McKendrick and W.O. Kermack have introduced the foundations of the entire
approach to epidemiology based on compartmental models.

The recent SARS epidemic, recurring influenza pandemics, and outbursts of diseases such
as the Ebola virus concern many people. On the other hand, every year, millions of people
die of measles, respiratory infections and other diseases that are treated as unimportant and
not considered dangerous. For most diseases, the mechanism of transmission of infections is
now better known. Diseases like influenza, measles, rubella, are transmitted by viral agents,
and they offer a powerful immunity against reinfection, but diseases transmitted by bacteria,
like tuberculosis and meningitis, confer no immunity against reinfection. Moreover, there are
infections transmitted by insects. However, a major problem remains the understanding of
the mechanisms that influence the spread of certain diseases.

Mathematical modeling in epidemiology tries to predict the dynamics of the spread of
disease, and it suggests control strategies. An introduction to mathematical modeling is found
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in [1, 5]. Many models were proposed, such as SIR, SIRS, SEIR, SEIRS, and they are
improved in many recent papers (see, e.g. [2, 9, 10, 15]).

One of the simplest models for epidemic disease is the SIR model. In this model births
and deaths are omitted because the time scale of an epidemic is generally much shorter than
the demographic time scale. However, there are diseases that are endemic in many parts of
the world and that causes millions of deaths each year. Moreover, the presence or absence of
protective immunity due to infection or vaccination will affect future transmission and illness
severity. In the three-dimensional proposed model, we take into account the births and deaths,
and we consider that the protective immunity is absent. Thus, we obtain a SIS-type model
in which a recovered individual automatically becomes a susceptible one. We also consider
that susceptible individuals are divided into two groups: non-vaccinated and vaccinated. In
addition, we assume a medical scenario in which vaccinated people take a special measure to
quarantine their newborns, to avoid infection with the new virus.

The paper is organized as follows. In Section 2, we present the three-dimensional con-
sidered model. In Section 3, we study the stability of this system. In Section 4, we perform
some numerical simulations and we notice some conclusions.

2 The 3D model

In this section, we consider a SIS-type model (susceptible-infected-susceptible), which in-
tends to describe the dynamics of an infection within the population as a function of time.

We consider that a part of people has been vaccinated for diseases that have created epi-
demics in the past, such as measles, tuberculosis, etc., and another segment of people has
not followed the vaccination schedule. In the case of a respiratory disease generated by a
new virus for which there is currently no available vaccine, the questions that are raised are
whether or not the vaccinated population has (partial) immunity against it and if this popula-
tion can fight more easily with the new rapidly spreading disease.

At a moment t0 = 0, the analyzed population is divided into three groups: non-vaccinated
susceptible individuals, vaccinated susceptible individuals, and infected individuals. At this
moment, we assume that vaccinated people take a special measure to quarantine their new-
borns, to avoid infection with the new virus, that is only the newborns which appear in first
group are considered in the following. At a moment t ≥ t0, we denote by x (t) the size of the
group 1 (susceptible individuals who are not vaccinated) and by y (t) the size of the group 2
(susceptible individuals who are vaccinated). Both groups contain only non-infected individ-
uals at time t. In addition, the size of the group of individuals infected at time t (group 3) is
z (t). An individual who belongs to the third group may or may not be vaccinated. Such an
individual has the disease and can transmit it. We assume that a recovered individual from
the group 3 automatically becomes a susceptible one. Clearly, a non-vaccinated recovered
individual will belong to the group 1, while a vaccinated recovered individual will belong
to the group 2. We also consider that all vaccines were made before the initial moment of
analysis, thus a new born, which is not subject of a special measure, will belong to the group
1. The gain in the group 3 is at rates proportional to the number of infected individuals from
group 3 and susceptible individuals from group 1 and 2, respectively. Then, the dynamics of
the interactions between the three groups is governed by the following laws:

ẋ = a1x − a2x + a3z − a4xz,

ẏ = −b2y + b3z − b4yz, (1)
ż = −d1z − a3z − b3z + a4xz + b4yz,

where:
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a1 is the birth rate of the individuals in group 1,
a2 is the death rate by any reason of the individuals in group 1,
a3 is the removal rate of the infected individuals from group 3 who are not vaccinated,
a4 is the infection rate of the individuals from group 1,
b2 is the death rate by any reason of the individuals in group 2
b3 is the removal rate of the infected individuals from group 3 who are vaccinated
b4 is the infection rate of the individuals from group 2
d1 is the death rate by any reason of individuals from group 3.

If we denote

a = a1 − a2, a3 = b, a4 = c, b2 = m, b3 = n, b4 = p, d = d1 + a3 + b3, (2)

then the considered dynamics becomes

ẋ = ax + bz − cxz,

ẏ = −my + nz − pyz, (3)
ż = −dz + cxz + pyz,

where a is the natural growth rate of the individuals in group 1, a ∈ R, b, c ≥ 0, m > 0,
n, p ≥ 0, and d = d1 + b+ n is the removal rate of the infected individuals, where d1 > 0, thus
d > b + n.

3 Stability of the considered model

In this section we find out the equilibrium points of the SIS-type system (3), and we study
their stability using First Lyapunov’s Stability Criterion [14] and Routh-Hurwitz Theorem
[8].

The biological-feasible region of model (3) requires x (t) , y (t) , z (t) ∈ R3
+, for any t ∈

(t0,∞). Therefore, we take into consideration those equilibrium points (x∗, y∗, z∗) of system
(3) that satisfy the conditions x∗ ≥ 0, y∗ ≥ 0, z∗ ≥ 0.

It is obvious that O(0, 0, 0) is an equilibrium point of system (3) and other equilibrium
points may appear. More precisely, we have the following result.

Proposition 3.1 Let a ∈ R, b, c, d,m, n, p ∈ R+, such that d > b + n,m > 0.
Then O(0, 0, 0) is an equilibrium point of system (3). Moreover, other equilibrium points

are given by:
a1) EM

1 (M, 0, 0),M ≥ 0, if a = 0;

a2) E2

(
d
c
,

adn
cm(d − b)

,
ad

c(d − b)

)
, if a, c > 0, p = 0;

a3) E3

(
d
c
, 0,

ad
c (d − b)

)
, if a, c, p > 0, n = 0;

a4) E4

(
cdm + adp − anp

c(cm + ap)
,

an
cm + ap

,
a
c

)
, if a, c, p, n > 0, b = 0;

a5) E5(x5, y5, z5), where

x5 =
adp + cdm + bcm − anp +

√
∆

2c (cm + ap)
, y5 =

d − cx5

p
, z5 =

dm − (cm + ap)x5

(b − d + n)p
,

where ∆ = c2 (b − d)2 m2 − 2acp
(
bd + bn + dn − d2

)
m + (adp − anp)2 , if a, b, c, n, p > 0.
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Proof. In order to find the equilibrium points, we need to solve the system
ax + bz − cxz = 0
−my + nz − pyz = 0
−dz + cxz + pyz = 0
x, y, z ≥ 0

, (4)

under the conditions a ∈ R, b, c, n, p ≥ 0,m > 0, d > b + n.
a1) Let a = 0. If z = 0, then my = 0, that is y = 0. We obtain a family of equilibrium

points, namely EM
1 = (M, 0, 0),M ≥ 0. If z > 0, then cx = b and −my = (d − b − n)z, which

is false.
a2) Let a , 0 and p = 0. System (4) becomes

ax + z(b − cx) = 0 , my − nz = 0 , z(cx − d) = 0.

We obtain the equilibrium point O(0, 0, 0) and, in addition, E2

(
d
c
,

adn
cm(d − b)

,
ad

c(d − b)

)
, if

a, c > 0.
a3) Let a , 0, p > 0, and n = 0. System (4) reads

ax + z(b − cx) = 0 , y(m + pz) = 0 , z(cx + py − d) = 0.

Since m > 0 and pz ≥ 0, it follows y = 0. Thus we obtain the equilibrium points O(0, 0, 0)

and E3

(
d
c
, 0,

ad
c (d − b)

)
, if a, c > 0.

a4) Let a , 0, n, p > 0 and b = 0. System (4) takes the form

x(a − cz) = 0 , −my + nz − pyz = 0 , z(cx + py − d) = 0.

If z = 0, then we get x = 0 and y = 0, that is O(0, 0, 0). If z , 0, but x = 0, it follows
py = d and my = (n− d)z, which is false. Hence x , 0. Then we obtain the equilibrium point

E4

(
cdm + adp − anp

c(cm + ap)
,

an
cm + ap

,
a
c

)
, if a, c > 0.

a5) Let a , 0, b, n, p > 0. If z = 0, then we obtain the equilibrium point O(0, 0, 0).

If z > 0, then the third equation of (4) leads to y =
d − cx

p
, with cx ≤ d. Thus the

second equation of (4) reads −my + nz − dz + cxz = 0, and, adding the first equation, we get
z(d− b− n) = ax−my. By hypothesis, d > b+ n, hence ax−my > 0, that is a > 0. Replacing

y, it follows
dm

cm + ap
< x ≤ d

c
.Moreover, z =

ax − my
d − b − n

=
dm − (cm + ap)x

(b − d + n)p
.

We replace z in the first equation of (4), and we find that x satisfies the equation

r2x2 − r1x + bdm = 0 ,
dm

cm + ap
< x ≤ d

c
, (5)

where r1 = adp + cdm + bcm − anp and r2 = c (cm + ap) .
If we consider c = 0, then the first equation of (4) becomes ax+ bz = 0, that is x = z = 0,

which is false. Hence c > 0 and consequently r2 > 0.
The discriminant of equation (5) is

∆ = c2 (b − d)2 m2 − 2acp
(
bd + bn + dn − d2

)
m + (adp − anp)2 . (6)

Consider the equation ∆ = 0 with the unknown variable m. Its discriminant is given by
∆m = 16a2bc2dnp2 (n + b − d) < 0. Therefore ∆ > 0 and equation (5) has two real roots,
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x1,2 =
r1 ±

√
∆

2r2
, which are positive. We have x1 =

r1 −
√
∆

2r2
<

dm
cm + ap

, thus this root does

not correspond. We also obtain that x2 =
r1 +

√
∆

2r2
fulfills (5). Therefore, the system has the

equilibrium point

E5(x5, y5, z5) , x5 =
r1 +

√
∆

2r2
, y5 =

d − cx5

p
, z5 =

dm − (cm + ap)x5

(b − d + n)p
,

if a, c > 0. �
In the sequel, we study the stability of the equilibrium points of system (3) Denote

G1 (x, y, z) = ax + bz − cxz,G2 (x, y, z) = −my + nz − pyz,G3 (x, y, z) = −dz + cxz + pyz.

The Jacobian matrix of system (3) is given by

J(x, y, z) =


∂G1
∂x

∂G1
∂y

∂G1
∂z

∂G2
∂x

∂G2
∂y

∂G2
∂z

∂G3
∂x

∂G3
∂y

∂G3
∂z

 =
 a − cz 0 b − cx

0 −m − pz n − py
cz pz cx − d + py


Proposition 3.2 Let a ∈ R \ {0}, d,m > 0.
a1) If a < 0, then O(0, 0, 0) is an asymptotically stable node of system (3).
a2) If a > 0, then O(0, 0, 0) is an unstable saddle.

Proof. The eigenvalues of J(0, 0, 0) are λ1 = a, λ2 = −m < 0, λ3 = −d < 0. By First
Lyapunov’s Stability Criterion, the conclusions immediately follow. �

Remark 3.1 On one hand, if the natural growth rate a is less than zero, then the population
extincts and consequently the equilibrium point O(0, 0, 0) is an attractor. On the other hand,
if a > 0, then O is unstable and thus various scenarios may appear.

Proposition 3.3 Let p = 0, a > 0, c > 0, b, d,m, n ∈ R+, d > b + n,m > 0.

Then E2

(
d
c
,

adn
cm(d − b)

,
ad

c(d − b)

)
is an asymptotically stable equilibrium point of system

(3). More precisely, if a2b2 − 4ad(b − d)2 ≥ 0, then E2 is a node, else it is a focus-node.

Proof. The characteristic polynomial of J(E2) is given by

P(λ) = (λ + m)
(
λ2 − ab

b − d
λ + ad

)
.

Then λ1 = −m < 0 and λ2,3 are reals negative numbers if a2b2 − 4ad(b − d)2 ≥ 0, or complex
conjugate numbers with negative real part otherwise. Therefore E2 is asymptotically stable
node or an asymptotically stable focus-node. �

Proposition 3.4 Let n = 0, p > 0, a > 0, c > 0, b, d,m ∈ R+, d > b + n,m > 0.

Then E3

(
d
c
, 0,

ad
c(d − b)

)
is an asymptotically stable equilibrium point of system (3). More

precisely, if a2b2 − 4ad(b − d)2 ≥ 0, then E3 is a node, else it is a focus-node.

Proof. Taking into account that the characteristic polynomial of J(E3) is given by

P(λ) =
(
λ + m +

adp
c(d − b)

) (
λ2 − ab

b − d
λ + ad

)
,

the conclusion follows. �
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Remark 3.2 A particular case arise whether the infection rate of the vaccinated individ-
uals is zero. This situation means that does not exist infected vaccinated individuals and,
consequently, we may consider that the removal rate n of the vaccinated individuals is zero.
In the hypothesis of Proposition 3.3, a local attractor E2 appears in the considered dynam-
ics, which becomes E3 (see Proposition 3.4). In time, the number of vaccinated individuals
vanish, because the newborns of this group are not considered in our dynamics.

Proposition 3.5 Let b = 0, p > 0, a > 0, c > 0, n > 0, d,m ∈ R+, d > b + n,m > 0.

Then E4

(
cdm + adp − anp

c(cm + ap)
,

an
cm + ap

,
a
c

)
is an unstable equilibrium point of system (3).

Proof. The characteristic polynomial of J(E4) has the form

P(λ) = λ3 + a1λ
2 + a2λ + a3,

where a1 =
cm + ap

c
, a2 =

a(cdm + (ad − (a + m)n)p)
cm + ap

, a3 =
a(cdm + a(d − n)p)

c
. Then

a1a2 − a3 = −
amnp

c
< 0, hence by Routh-Hurwitz Theorem the conclusion follows. �

4 Numerical simulations

Numerical computations allow us to establish the stability of the equilibrium points. In the
case a, b, c, n, p > 0, the analytical study of the stability of the equilibrium point E5 (see
Proposition 3.1) is very difficult, if not impossible. Obviously, if we fix the values of these
parameters, then we may numerically compute the coordinates of E5 and the eigenvalues of
J(E5). In addition, numerical simulations of the time series of the solutions x(t), y(t), z(t) may
be drawn.

In order to compare the behavior of the vaccinated group versus the non-vaccinated one,
we firstly fix the values of all parameters except b (the removal rate of the infected individuals
who are not vaccinate), n (the removal rate of the infected individuals who are vaccinate),
and d, which depends on b and n, and consider two cases: b = n and b < n. The simulations
are shown in Figure 1. We notice that the number of individuals that belong to group 2
(vaccinated, y(t)) decreases more slowly as the parameter n increases, as expected. Moreover,
the number of the infected people grows slowly and, consequently, the number of individuals
in group 1 decreases more slowly.

Figure 1. Time series of system (3): n = b vs. n > b (a = 2.73973·10−6, c = 0.0015,m = 0.0000328767, p = 0.001;
left: b = n = 0.03, d = 0.0600466, right: b = 0.03, n = 0.09, d = 0.120047; initial conditions: x0 = 99; y0 =
100; z0 = 1).
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Figure 2. Time series of system (3): p = c vs. p < c (a = 2.73973 · 10−6, b = 0.03, c = 0.0015, d = 0.120047,m =
0.0000328767, n = 0.09; left: p = c = 0.0015, right: p = 0.001; initial conditions: x0 = 99; y0 = 100; z0 = 1).

Now, we fix the values of all parameters except p (the infection rate of the vaccinated
individuals), and we compare the case when p = c, where c is the the infection rate of the
non-vaccinated individuals, with the case p < c. The simulations are shown in Figure 2. We
notice that the number of individuals that belong to group 2 (vaccinated, y(t)) decreases more
slowly as the infection rate p of the vaccinated individuals drops. In addition, the number of
infected individuals increases more slowly.

A particular situation arises when b = 0, that is the recovery rate of the non-vaccinated
individuals vanishes. In this case, the gain in the group 1 is given only by the natural growth
rate and the infected individuals that belong to this group do not recover. The simulation
given in Figure 3 (right) shows that this group is extinct after a short time, which is explained
by the fact that the new born are non-vaccinated, then they get infected and do not recover.

Figure 3. Time series of system (3): b , 0 vs. b = 0 (a = 2.73973 · 10−6, c = 0.0015,m = 0.0000328767, n =
0.09, p = 0.001; left: b = 0.03, d = 0.120047; right: b = 0, d = 0.0900362; initial conditions: x0 = 99; y0 =
100; z0 = 1).

The above simulations suggest that the dynamics of individuals in the considered SIS-
type model is in concordance with the variation of the corresponding infection and recovered
rates, respectively.
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