Rank 2 preservers on symmetric matrices with zero trace

Wai Keong Kok

1Department of Mathematical and Data Science, Faculty of Computing and Information Technology, Tunku Abdul Rahman University College 53300 Kuala Lumpur, Malaysia

Abstract. Let F be a field, V_1 and V_2 be vector spaces of matrices over F and let ρ be the rank function. If $T: V_1 \rightarrow V_2$ is a linear map, and k a fixed positive integer, we say that T is a rank k preserver if for any matrix $A \in V_1$, $\rho(A) = k$ implies $\rho(T(A)) = k$. In this paper, we characterize those rank 2 preservers on symmetric matrices with zero trace under certain conditions.

1 Introduction

Let F^{aza} be the algebra of all $n \times n$ matrices over a field F. Let $sl_n(F)$ denote the subspace of F^{aza} consisting of all matrices with zero trace. In [1], Botta, Pierce and Watkins obtained a useful result concerning the structure of nonsingular linear mapping on $sl_n(F)$ that preserve nilpotent matrices where F is infinite. In [2], Li and Pierce characterized linear mappings on $sl_n(F)$ that preserve nonzero nilpotent matrices with rank at most k where k is a fixed positive integer less than n and F is algebraically closed of characteristic zero. Then, Watkins characterized linear mappings from $sl_n(F)$ to F^{aza} that preserve rank one matrices where F is an algebraically closed field of characteristic not equal to 2. He applied this result to determine the structure of bilinear mappings on F^{aza} that have certain rank-preserving properties in [3] and [4] respectively.

Let $S_n(F)$ be the vector space of all $n \times n$ symmetric matrices over F and $Z_0(S_n(F))$ be its subspace consisting of all symmetric matrices with zero trace. Let $n \geq 4$ and F be a field of characteristic greater than 3. Motivated by work of Lim [5] in the characterization of linear rank one preservers on matrices with zero trace, we characterize those rank 2 preservers on symmetric matrices with zero trace under certain conditions in this paper and will discuss some consequences of this characterization in our next paper.

*Corresponding author: kokwk@tarc.edu.my

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).
2 Some definitions and preliminary results

Let U be a vector space over F. We use tensor language in our investigation. This provides us with a larger context. We denote by $U^{(2)}$ the second symmetric product space over U and denoted by $x \cdot y$, $x, y \in U$, the decomposable elements of $U^{(2)}$. For each u in U, let u^2 denote $u \cdot u$.

A scalar product on U is a function which assigns a scalar $(x, y) \in F$ to each ordered pair of vectors $x, y \in U$ such that for any $x, y, z \in U$ and any $c \in F$

(i) $(x + y, z) = (x, z) + (y, z)$
(ii) $(cx, y) = c(x, y)$
(iii) $(x, y) = (y, x)$

We say x is orthogonal to y or x and y are orthogonal if $(x, y) = 0$. Let S be a set of vectors in U. Then S is called an orthogonal set if $(x, y) = 0$ for all $x, y \in S, x \neq y$. If in addition, $(x, x) = 1$ for every $x \in S$, then S is called an orthonormal set.

Now we let U be equipped with a scalar product $(,):U \times U \rightarrow F$ and U has an orthonormal basis \mathbf{E}. Let $Z_0(U^{(2)})$ be the subset of $U^{(2)}$ that consists of all vectors of the form

$$\sum_{1 \leq i \leq j \leq n} a_{ij} u_i \cdot u_j$$

where $\{u_1, ..., u_n\}$ is an arbitrary finite subset of \mathbf{E} and a_{ij} $(1 \leq i \leq j \leq n)$ are arbitrary scalars in F such that \(\sum_{i=1}^{n} a_{ii} = 0\). Clearly $Z_0(U^{(2)})$ is a subspace of $U^{(2)}$ and we call $Z_0(U^{(2)})$ the space of traceless 2nd order symmetric tensors over U.

Proposition 2.1 If $\{e_i : i \in A\}$ where $A \supseteq \{1, 2\}$ is an orthonormal basis for U, then $B = \{e_i \cdot e_j, e_i^2 - e_j^2 : i \neq j, k \neq 1 \text{ and } 1, i, j, k \in A\}$ is a basis for $Z_0(U^{(2)})$.

Proof.
Clearly B is a linearly independent set. Hence it is sufficient to show that B spans $Z_0(U^{(2)})$.

Let $x \in Z_0(U^{(2)})$. Then $x = \sum_{1 \leq i \leq j \leq n} a_{ij} u_i \cdot u_j$ and $\sum_{i=1}^{n} a_{ii} = 0$ where $\{u_1, ..., u_n\}$ is a finite subset of $\{e_i : i \in A\}$ and a_{ij} $(1 \leq i \leq j \leq n)$ are scalars in F. It follows that

$$x = \sum_{1 \leq i \leq j \leq n} a_{ij} u_i \cdot u_j - \sum_{k=1}^{n} a_{kk} (e_i^2 - u_k^2).$$

Therefore, B spans $Z_0(U^{(2)})$. \square

Let $Z_0(S_n(F))$ denote the subspace of $S_n(F)$ such that for any $A \in Z_0(S_n(F))$, $\text{tr}(A) = 0$. If U is a finite dimensional vector space with an orthonormal basis $\{e_i : i = 1, ..., n\}$, then $Z_0(U^{(2)})$ is isomorphic in a natural way to $Z_0(S_n(F))$ by the restricted...
isomorphism $\varphi|_{Z_0(U^{(2)})}$ where φ is the isomorphism from $U^{(2)}$ to $S_n(F)$ defined by

$$\varphi(e_i \cdot e_j) = E_{ij} + E_{ji}, 1 \leq i \leq j \leq n.$$

Remark. If U is a Euclidean space, then there does not exist any rank 1 vector in $Z_0(U^{(2)})$.

Let J_k denote the set of vectors in $U^{(2)}$ of the form $\sum_{i=1}^k \lambda_i x_i^2$, where x_1, \ldots, x_k are linearly independent vectors and $\lambda_1, \ldots, \lambda_k \in F \setminus \{0\}$. For each vector $u \in U$, let $u \cdot U = \{u \cdot v : v \in U\}$.

Lemma 2.2 Let M be a subspace of $U^{(2)}$ such that $M \subseteq \{0\} \cup J_1 \cup J_2$. Then either

(i) $M \subseteq W^{(2)}$ for some subspace W of U that is 2 dimension or

(ii) $M \subseteq u \cdot U$ for some $u \in U \setminus \{0\}$.

Proof. If $M \cap J_2 = \emptyset$, then clearly $M = \{x^2\}$ for some x in U. Let $A_i = au_i^2 + u_2^2 \in J_2 \cap M$.

Assume that $M \not\subseteq V^{(2)}$ where $V = \langle u_1, u_2 \rangle$. Then it is clear that there exists $A_2 = bu_2^2 + v^2 \in J_2 \cap M$ where u_1, u_2, u_3 are linearly independent. Clearly $v \in \langle u_1, u_2, u_3 \rangle$, otherwise $A_1 + A_2 \in J_1$, a contradiction. Let $v = cu_1 + du_2 + eu_3$ where $c,d,e \in F$.

Since for any $\lambda \in F$,

$$\lambda A_1 + A_2 = (\lambda a + c^2)u_1^2 + (\lambda + d^2)u_2^2 + (b + e^2)u_3^2 + 2cdu_1 \cdot u_2 + 2ceu_1 \cdot u_3 + 2deu_2 \cdot u_3 \in J_1 \cup J_2,$$

it follows that

$$\begin{vmatrix}
\lambda a + c^2 & cd & ce \\
\lambda & \lambda + d^2 & de \\
ce & de & b + e^2
\end{vmatrix}
= a(b + e^2)\lambda^2 + b(ad^2 + c^2)\lambda = 0$$

for any $\lambda \in F$. Since $|F| \geq 3$, we have

$$b + e^2 = 0 \quad (1)$$

and

$$ad^2 + c^2 = 0. \quad (2)$$

From (1) we have

$$A_2 = (cu_1 + du_2) \cdot (cu_1 + du_2 + 2eu_3). \quad (3)$$

From (2) we have $ad^{-1} + d^{-1}c = 0$ and hence

$$A_1 = (cu_1 + du_2) \cdot (ac^{-1}u_1 + d^{-1}u_2). \quad (4)$$

From (3) and (4) we have $A_1 = u \cdot y_1$, $A_2 = u \cdot y_2$ where u, y_1, y_2 are linearly independent.

Suppose now $A = x^2 \in J_1 \cap M$. Then $A + A_1, A + A_2 \in J_1 \cap J_2$ imply that $x \in \langle u, y_1 \rangle \cap \langle u, y_2 \rangle = \langle u \rangle$ and hence $A \in u \cdot U$.

Suppose that $B = \lambda_1 y_1^2 + \lambda_2 y_2^2 \in J_2 \cap M$. For each $\lambda \in F$, let $C_\lambda = u \cdot z_\lambda$, where $z_\lambda = y_1 + \lambda y_2$. Then $C_\lambda \in M$. Clearly there exists a subset D of F with 2 elements such
that $\langle v_i, v_j \rangle \neq \langle u, z_\lambda \rangle$ for all $\lambda \in D$. Hence $\dim \langle v_i, v_j, u, z_\lambda \rangle \geq 3$ for all $\lambda \in D$. By our previous argument, for any $\lambda \in D$, there exists $w_\lambda \in U$ such that $B, C_\lambda \in w_\lambda \cdot U$.

Suppose $B \neq u \cdot U$. Then $B = \alpha z_i \cdot z_j$ for some $\alpha \in F \setminus \{0\}$ where i and j are distinct element in D. Let $H = u \cdot z_k$ where $k \in F \setminus \{i, j\}$. Since $\dim \langle u, z_i, z_j, z_k \rangle = 3$,

$B, H \in v \cdot U$ for some $v \in U$ by previous argument. This yields a contradiction since $B = \alpha z_i \cdot z_j$ and $H = u \cdot z_k$ do not have a common factor. Therefore $B = u \cdot U$.

3 Rank 2 preservers

Let U and W be vector spaces over F. We always assume that U has an orthonormal basis, $\{e_i : i \in A\}$, with respect to a scalar product $\langle , \rangle : U \times U \to F$, where $A \supseteq \{1, 2, \ldots, n\}$ if A has at least n elements. For each vector $u \in U$, let $\langle u \rangle^\perp = \{v \in U : \langle v, u \rangle = 0\}$.

Lemma 3.1 Let $T : Z_0(U^{(2)}) \to W^{(2)}$ be a rank 2 preserver. If V is a subspace of U such that $V \subseteq \langle u \rangle^\perp$ for some $u \in U \setminus V$, then $\dim T(u \cdot V) = \dim u \cdot V$. Moreover, if $\dim V \geq 3$, then $T(u \cdot V) \subseteq w \cdot W$ for some $w \in W \setminus \{0\}$.

Proof.
Suppose $T(u \cdot v_1) = T(u \cdot v_2)$ for some $v_1, v_2 \in V$. Then $T(u \cdot (v_1 - v_2)) = 0$ and this implies that $v_1 = v_2$, since T is a rank 2 preserver. Hence $\dim T(u \cdot V) = \dim u \cdot V$. If $\dim V \geq 3$, then $\dim(T(u \cdot V)) \geq 3$. Since $T(u \cdot V)$ is a subspace of $W^{(2)}$ contained in $J_2 \cup \{0\}$, it follows by Lemma 2.2 that $T(u \cdot V) \subseteq w \cdot W$ for some $w \in W \setminus \{0\}$. □

Theorem 3.2 Let T be a rank 2 preserver from $Z_0(U^{(2)})$ to $W^{(2)}$. If $\dim U \geq 4$, then one of the following holds:

(i) $T = \lambda P_2(x)\big|_{Z_0(U^{(2)})}$ for some $\lambda \in F \setminus \{0\}$ and some one-to-one linear mapping $f : U \to W$ where $P_2(x)$ is a second induced power of f such that $P_2(x)(x \cdot y) = f(x) \cdot f(y)$;

(ii) $\text{Im} T \subseteq w \cdot W$ for some $w \in W \setminus \{0\}$.

Proof.
Note that \(\langle e_i \rangle^\perp \) is a subspace of \(U \), \(\dim \langle e_i \rangle^\perp \geq 3 \) and \(e_i \notin \langle e_i \rangle^\perp \). In view of Lemma 3.1, \(T(\langle e_i \rangle^\perp) \subseteq w_i \cdot W \) for some \(w_i \in W \setminus \{0\}, i \in A \). Now we have either \(\{w_i : i \in A\} \) is a pairwise linearly independent set or \(\langle w_j \rangle = \langle w_j \rangle \) for some distinct \(i, j \). We will consider these two cases separately.

Case 1: \(\{w_i : i \in A\} \) is a pairwise linearly independent set.

Since \(T(e_1 \cdot e_2) \in w_1 \cdot W \), \(T(e_2 \cdot e_1) \in w_2 \cdot W \) and \(w_1, w_2 \) are linearly independent, we have \(T(e_1 \cdot e_2) = \alpha_{12} w_1 \cdot w_2 \) for some \(\alpha_{12} \in F \setminus \{0\} \). Likewise,
\[
T(e_j \cdot e_j) = \alpha_{jj} w_i \cdot w_j ,
\]
where \(\alpha_{jj} \in F \setminus \{0\} \) for all distinct \(i, j \). Clearly
\[
\alpha_{ij} = \alpha_{ji} .
\]

Now we claim that \(\{w_i : i \in A\} \) is a linearly independent set. Suppose the contrary. Let \(w_i = \sum_{i \in A \setminus \{1\}} a_i w_i \) for some \(a_i \in F \). Then from (5), we have
\[
T\left(e_2 \cdot \left(\frac{1}{\alpha_{12}} e_1 - \sum_{i \in A \setminus \{1,2\}} \frac{a_i}{\alpha_{12}} e_i \right) \right) = w_2 \cdot \left(w_i - \sum_{i \in A \setminus \{1,2\}} a_i w_i \right)
\]
is of rank \(\leq 1 \), a contradiction. So, \(\{w_i : i \in A\} \) is a linearly independent set. Let
\[
M = \langle (e_1 + e_2) \cdot (e_1 - e_2), (e_1 + e_2) \cdot e_3, (e_1 + e_2) \cdot e_4, \rangle.
\]
Since \(\langle e_1 + e_2, e_3, e_4 \rangle \) is a 3-dimensional subspace of \(\langle e_1 + e_2 \rangle^\perp \) and \(e_1 + e_2 \notin \langle e_1 - e_2, e_3, e_4 \rangle \), it follows by Lemma 3.1 that \(\dim M = 3 \) and \(T(M) \subseteq u \cdot W \) for some \(u \in W \setminus \{0\} \).

Let
\[
T((e_1 + e_2) \cdot (e_1 - e_2)) = u \cdot u_1 ,
\]
\[
T((e_1 + e_2) \cdot e_3) = u \cdot u_2 ,
\]
\[
T((e_1 + e_2) \cdot e_4) = u \cdot u_3 ,
\]
where \(\dim \langle u_1, u_2, u_3 \rangle = 3 \). In view of (6), we have
\[
T(e_1 + e_2) = T(e_1 \cdot e_2) + T(e_1 \cdot e_3)
\]
\[
= (\alpha_{13} w_1 + \alpha_{23} w_2) \cdot w_2 ,
\]
\[
T(e_1 + e_2) = T(e_1 \cdot e_4) + T(e_1 \cdot e_4)
\]
\[
= (\alpha_{14} w_1 + \alpha_{24} w_2) \cdot w_2 .
\]
Hence
\[
u \cdot u_2 = (\alpha_{13} w_1 + \alpha_{23} w_2) \cdot w_3 ,
\]
\[
u \cdot u_3 = (\alpha_{14} w_1 + \alpha_{24} w_2) \cdot w_4 .
\]
Since \(\dim \langle w_1, w_2, w_3, w_4 \rangle = 4 \), we have \(\langle u \rangle = \langle \alpha_{13} w_1 + \alpha_{23} w_2, \rangle = \langle \alpha_{14} w_1 + \alpha_{24} w_2 \rangle \). Hence
\[
\frac{\alpha_{23}}{\alpha_{13}} = \frac{\alpha_{24}}{\alpha_{14}} .
\]
Likewise
\[
\frac{\alpha_{ik}}{\alpha_{jk}} = \frac{\alpha_{il}}{\alpha_{jl}} \tag{7}
\]

for all distinct \(i, j, k, l\). Now let
\[
N = \langle (e_1 - e_2) \cdot (e_1 + e_2), (e_1 - e_2) \cdot e_3, (e_1 - e_2) \cdot e_4 \rangle.
\]

Since \(\langle e_1 + e_2, e_3, e_4 \rangle\) is a 3-dimensional subspace of \(\langle e_1 - e_2 \rangle^\perp\) and \(e_1 - e_2 \notin \langle e_1 + e_2, e_3, e_4 \rangle\), it follows by Lemma 3.1 that \(\dim T(N) = 3\) and \(T(N) \subseteq v \cdot W, \; v \in W \setminus \{0\}\). Let
\[
T((e_1 - e_2) \cdot (e_1 + e_2)) = v \cdot v_1,
\]
\[
T((e_1 - e_2) \cdot e_3) = v \cdot v_2,
\]
\[
T((e_1 - e_2) \cdot e_4) = v \cdot v_3.
\]

where \(\dim \langle v_1, v_2, v_3 \rangle = 3\). On the other hand, in view of (5)
\[
T((e_1 - e_2) \cdot e_3) = T(e_1 \cdot e_3) - T(e_2 \cdot e_3) = (\alpha_{13} w_1 - \alpha_{23} w_2) \cdot w_3,
\]
\[
T((e_1 - e_2) \cdot e_4) = T(e_1 \cdot e_4) - T(e_2 \cdot e_4) = (\alpha_{14} w_1 - \alpha_{24} w_2) \cdot w_4.
\]

Hence
\[
v \cdot v_2 = (\alpha_{13} w_1 - \alpha_{23} w_2) \cdot w_3,
\]
\[
v \cdot v_3 = (\alpha_{14} w_1 - \alpha_{24} w_2) \cdot w_4.
\]

Since \(\dim \langle w_1, w_2, w_3, w_4 \rangle = 4\), we have
\[
\langle v \rangle = \langle \alpha_{13} w_1 - \alpha_{23} w_3 \rangle = \langle \alpha_{14} w_1 - \alpha_{24} w_3 \rangle.
\]

Now we have
\[
T((e_1 + e_2) \cdot (e_1 - e_2)) \in (\alpha_{13} w_1 + \alpha_{23} w_2) \cdot W
\]
and
\[
T((e_1 - e_2) \cdot (e_1 + e_2)) \in (\alpha_{13} w_1 - \alpha_{23} w_2) \cdot W.
\]

Since \(\alpha_{13} w_1 + \alpha_{23} w_2\) and \(\alpha_{13} w_1 - \alpha_{23} w_2\) are linearly independent, we have
\[
T(e_1^2 - e_2^2) = T((e_1 + e_2) \cdot (e_1 - e_2)) = \lambda_{12}^{(3)} (\alpha_{13} w_1 + \alpha_{23} w_2) \cdot (\alpha_{13} w_1 - \alpha_{23} w_2) = \lambda_{12}^{(3)} (\alpha_{13}^2 w_1^2 - \alpha_{23}^2 w_2^2)
\]
where \(\lambda_{12}^{(3)} \in F \setminus \{0\}\). Likewise
\[
T(e_1^2 - e_2^2) = \lambda_{ij}^{(k)} (\alpha_{ik}^2 w_i^2 - \alpha_{jk}^2 w_j^2) \tag{8}
\]
where \(\lambda_{ij}^{(k)} \in F \setminus \{0\}\) for all distinct \(i, j, k\). As a consequence
\[
\lambda_{ij}^{(k)} \alpha_{ik}^2 = \lambda_{ij}^{(l)} \alpha_{il}^2 \tag{9}
\]
\[
\lambda_{ij}^{(k)} = \lambda_{ji}^{(k)} \tag{10}
\]
for all distinct \(i, j, k, l\). Now let
\[
u_1 = e_1 + e_2 + e_3,
\]
\[
u_2 = e_1 - e_2,
\]
\[
u_3 = e_1 - e_3,
\]
\[
u_4 = e_4.
\]
Let $H = \langle u_1 \cdot u_2, u_1 \cdot u_3, u_1 \cdot u_4 \rangle$. Since $\langle u_2, u_3, u_4 \rangle$ is a 3-dimensional subspace of $\langle u_1 \rangle^\perp$ and $u_1 \notin \langle u_2, u_3, u_4 \rangle$, it follows by Lemma 3.1 that $\dim(T(H)) = 3$ and $T(H) \subseteq v \cdot W$ for some $v \in W \setminus \{0\}$. In view of (5), (7) and (8), we have

\[T(u_1 \cdot u_2) = T(e_1^2 - e_2^2 + e_1 \cdot e_3 - e_2 \cdot e_3) = \lambda_{12}^{(3)} (\alpha_{13}^2 w_1^2 - \alpha_{23}^2 w_2^2) + \alpha_{13} w_1 \cdot w_3 - \alpha_{23} w_2 \cdot w_3. \]

\[T(u_1 \cdot u_3) = T(e_1^2 - e_3^2 + e_1 \cdot e_2 - e_3 \cdot e_2) = \lambda_{13}^{(3)} (\alpha_{13}^2 w_1^2 - \alpha_{23}^2 w_3^2) + \alpha_{13} w_1 \cdot w_2 - \alpha_{23} w_3 \cdot w_2. \]

Since $(\alpha_{13} w_1 - \alpha_{23} w_2), (\alpha_{13} w_1 - \alpha_{23} w_3)$ and $(\lambda_{12}^{(3)} \alpha_{13} w_1 + \lambda_{13}^{(3)} \alpha_{23} w_2 + w_3)$ are pairwise linearly independent and $T(u_1 \cdot u_2), T(u_1 \cdot u_3)$ have a common factor, we have

\[\left\langle \lambda_{12}^{(3)} \alpha_{13} w_1 + \lambda_{13}^{(3)} \alpha_{23} w_2 + w_3 \right\rangle = \left\langle \lambda_{13}^{(3)} \alpha_{13} w_1 + w_2 + \lambda_{13}^{(3)} \alpha_{23} w_3 \right\rangle. \]

Hence

\[\frac{\lambda_{12}^{(3)} \alpha_{13}}{\lambda_{13}^{(3)} \alpha_{23}} = \frac{1}{\lambda_{13}^{(3)} \alpha_{23}}. \]

In view of (6), we have

\[\frac{1}{\lambda_{12}^{(3)}} = \lambda_{13}^{(2)} \alpha_{23} \alpha_{32} = \lambda_{13}^{(2)} \alpha_{32}^2, \]

\[\frac{1}{\lambda_{13}^{(3)}} = \frac{\alpha_{13}}{\alpha_{12} \alpha_{23}}. \]

Likewise,

\[\frac{1}{\lambda_{ij}^{(k)}} = \lambda_{ik}^{(j)} \alpha_{ij}^2 \]

\[\lambda_{ij}^{(k)} = \frac{\alpha_{ij}}{\alpha_{ik} \alpha_{jk}} \]

for all distinct i, j, k. In view of (12) and (7), we have

\[\lambda_{ij}^{(k)} = \frac{1}{\alpha_{ik}} \left(\frac{\alpha_{ij}}{\alpha_{jk}} \right) = \frac{1}{\alpha_{ik}} \left(\frac{\alpha_{ji}}{\alpha_{jk}} \right) = \lambda_{ij}^{(k)} \]

for all distinct i, j, k, l. In view of (10) and (13), we find that

\[\lambda_{ij}^{(k)} \]

have a common value $\lambda^{(k)}$ for all $i, j \notin \{k\}$. Now we define a linear mapping $f: U \rightarrow W$ by

\[f(e_i) = \begin{cases} \frac{1}{\lambda} w_3, & i = 3 \\ \alpha_{13} w_i, & i \neq 3 \end{cases} \]
where \(\lambda = \lambda^{(3)} \). For any distinct elements \(i, j, 3 \) in \(A \), in view of (5), (8), (9), (11), (12) and (14), we have

\[
\lambda P_2(f)(e_i \cdot e_j) \\
= \lambda^{(3)} f(e_i) \cdot f(e_j) \\
= \lambda^{(3)} \alpha_i \alpha_j w_i \cdot w_j \\
= \alpha_i w_i \cdot w_j \\
= T(e_i \cdot e_j),
\]

\[
\lambda P_2(f)(e_i \cdot e_3) \\
= \lambda f(e_i) \cdot f(e_3) \\
= \lambda (\alpha_i w_i) \cdot \left(\frac{1}{\lambda^{(3)}} w_3 \right) \\
= \alpha_i w_i \cdot w_3 \\
= T(e_i \cdot e_3),
\]

\[
\lambda P_2(f)(e_i^2 - e_i^3) \\
= \lambda^{(3)} f(e_i)^2 - \lambda^{(3)} f(e_i)^2 \\
= \lambda^{(3)} \alpha_i^2 w_i^2 - \lambda^{(3)} \left(\frac{1}{\lambda^{(3)}} \right)^2 w_i^2 \\
= \lambda^{(k)} \alpha_i^2 w_i^2 - \frac{1}{\lambda^{(3)_k}} w_i^2 \quad \text{where } k \neq \{i, j, 3\}
\]

\[
= \lambda^{(k)} \alpha_i^2 w_i^2 - \alpha_{i_3}^2 w_3^2 \\
= \lambda^{(k)} (\alpha_i^2 w_i^2 - \alpha_{i_3}^2 w_3^2) \\
= T(e_i^2 - e_i^3).
\]

Therefore \(T = \lambda P_2(f)|_{Z_\alpha(w)_{(v)}} \) and \(f \) is injective.

Case 2: \(\langle w_i \rangle = \langle w_j \rangle \) for some distinct \(i, j \).

Let \(w = w_i \). Without loss of generality, we may assume that \(w_i = w_2 \). We first show that

\[
T(e_i \cdot \langle w_i \rangle^\perp) \subseteq w \cdot W
\]

for all \(i \in A \).

If \(w_3 \) and \(w \) are linearly independent, then

\[
T(e_i \cdot e_j) = \alpha w \cdot w_3
\]

for some \(\alpha \in F \setminus \{0\} \). Similarly, \(T(e_i \cdot e_3) = \beta w \cdot w_3 \) for some \(\beta \in F \setminus \{0\} \). Hence

\[
T(e_i \cdot (\beta e_i - \alpha e_3)) = 0.
\]

This contradicts the hypothesis that \(\rho(T(e_i \cdot (\beta e_i - \alpha e_3))) = 2 \). Thus \(\langle w_3 \rangle = \langle w \rangle \). Likewise, \(\langle w_k \rangle = \langle w \rangle \), for all \(k \in A \). Therefore, we can conclude that
for all \(i \in A\).

Now we show that

\[T\left(e_i \cdot \{e_i\}^\perp \right) \subseteq w \cdot W \]

for all distinct \(i, j\).

Let

\[
T(e_i \cdot e_i) = w \cdot z_i, \\
T(e_i \cdot e_j) = w \cdot z_j, \\
T(e_i \cdot e_k) = w \cdot z_k, \\
T(e_i \cdot e_l) = w \cdot z_l,
\]

where \(z_1, z_2, z_3, z_4 \in W\). Let

\[
M = \left\langle (e_1 + e_2) \cdot (e_1 - e_2), (e_1 + e_2) \cdot e_3, (e_1 + e_2) \cdot e_4 \right\rangle.
\]

Then \(\langle e_1 - e_2, e_1, e_4 \rangle\) is a three dimensional subspace of \(\langle e_1 + e_2 \rangle^\perp\) and in view of Lemma 3.1, \(\dim T(M) = 3\) and \(T(M) \subseteq v \cdot W\) for some \(v \in W\). Let

\[
T((e_i + e_2) \cdot (e_1 - e_2)) = v \cdot v_1, \\
T((e_1 + e_2) \cdot e_3) = v \cdot v_2, \\
T((e_1 + e_2) \cdot e_4) = v \cdot v_3,
\]

where \(\dim \langle v_1, v_2, v_3 \rangle = 3\). On the other hand,

\[
T((e_1 + e_2) \cdot e_3) = T(e_i \cdot e_3) + T(e_2 \cdot e_3) \\
= (z_i + z_2) \cdot w.
\]

\[
T((e_1 + e_2) \cdot e_4) = T(e_i \cdot e_4) + T(e_2 \cdot e_4) \\
= (z_i + z_4) \cdot w.
\]

Since \(\dim T(M) = 3\), \(z_i + z_2\) and \(z_i + z_4\) are linearly independent. Then by comparing the two expressions for \(T((e_1 + e_2) \cdot e_3)\) and \(T((e_1 + e_2) \cdot e_4)\), clearly \(\langle w \rangle = \langle v \rangle\) and we obtain

\[
T(e_i^2 - e_j^2) \subseteq w \cdot W.
\]

Likewise,

\[
T(e_i^2 - e_j^2) \subseteq w \cdot W
\]

for all distinct \(i, j\). Now we have proved that

\[
T\left(e_i \cdot \{e_i\}^\perp \right) \subseteq w \cdot W
\]

for all \(i \in A\), and

\[
T(e_i^2 - e_j^2) \subseteq w \cdot W
\]

for all distinct \(i, j\). Therefore \(\text{Im} T \subseteq w \cdot W\). \(\square\)

Remark. We conjecture that Theorem 3.2 is also true when \(\dim U = 3\). If \(\dim U = 2\), Theorem 3.2 is no longer true.
Example Let U be a 2-dimensional Euclidean space with an orthonormal basis $\{e_1, e_2\}$.

Let $T : Z_0\left(U^{(2)}\right) \to U^{(2)}$ be a linear mapping such that $T(e_1^2 - e_2^2) = e_1 \cdot e_2$ and $T(e_1 \cdot e_2) = e_1^2 - e_2^2$. Then clearly T is a rank 2 preserver. However T is neither of the form (i) nor the form (ii) in Theorem 3.2.

Now we state Theorem 3.2 in matrix language when the dimension of U and W are finite.

Corollary 3.3 Let n and m be positive integers and let L be a rank 2 preserver from $Z_0(S_n(F))$ to $S_m(F)$. If $n \geq 4$, then one of the following holds:

(i) There exists a rank $n \times n$ matrix P such that $L(A) = \lambda P A P^t$ for all $A \in Z_0(S_n(F))$ where $\lambda \in F \setminus \{0\}$;

(ii) There exists a nonsingular m-square matrix Q such that

$$\text{Im } L \subseteq \begin{Bmatrix} Q \begin{pmatrix} c_1 & c_2 & \cdots & c_m \\ c_2 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ c_m & 0 & \cdots & 0 \end{pmatrix} Q^t : c_j \in F, j = 1, 2, \ldots, m \end{Bmatrix}.$$

The author would like to thank the referees for valuable comments.

References