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Abstract. In this paper, the traveling wave solution of Kerner konhauser 

model is obtained by phase plane analysis method, and a new model suitable 

for stability analysis is obtained by variable transformation. The new model 

can describe and predict the nonlinear traffic phenomenon on Expressway 

from the perspective of system global stability. In this paper, the nonlinear 

system and linear system are obtained respectively by traveling wave 

substitution and Taylor expansion at the equilibrium point. According to the 

qualitative theory of differential equations, the equilibrium point type and 

stability of the linear system are determined. Finally, the simulation results 

show the consistency between the numerical results and the theoretical 

analysis. 
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1 Introduction 

The transportation system is a very complex nonlinear system, which makes a large 

number of nonlinear phenomena occur in the transportation system. Therefore, researchers 

need to further analyze the traffic system problem from the perspective of nonlinearity. 

Researchers found that when the parameters in most traffic flow models change and exceed 

a certain critical value, the qualitative behavior of the traffic system will also change 

essentially, which is highly consistent with the sudden changes of various traffic phenomena 

in the actual traffic, such as free driving state, vehicle walking and stopping state, shock wave, 

sparse wave The transformation between various traffic states such as road traffic bottleneck, 

steep drop of traffic capacity, lag effect, cluster effect and synchronous flow. The 

phenomenon of stopping while walking is a research hotspot. In 1993 

Kerner and KonhÄauser[1]proposed a macro high-order traffic flow model to describe the 

phenomenon of walking and stopping in traffic flow. 
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The macro traffic flow model proposed by Kerner and KonhÄauser considers the role of 

viscosity term on the basis of PW model. PW model is the development of 

LWR model([2−3]) .  
Since LWR model was proposed, many scholars have further studied it [4] - [5] 

The LWR model assumes that the traffic flow always satisfies the equilibrium speed 

density relationship , so LWR model can not accurately describe the actual traffic flow in 

non-equilibrium state at most times, and can not simulate nonlinear traffic flow phenomena 

such as time-to-time stop, ghost traffic congestion and traffic lag, which is its biggest 

limitation.  

In order to overcome the shortcomings of LWR model, many scholars propose to replace 

the equilibrium velocity density relationship v(x, t) = Ve(𝜌 (x, t)) with the dynamic equation 

of average velocity V (x, t), the LWR model is extended to an unbalanced high-order 

continuous model, 𝑃𝑊([6−7]) model is a typical one. 

𝐾üℎ𝑛𝑒[8]considered the effect of viscosity term on the basis of PW model, that is, added 

in the acceleration equation𝜇0
𝜑2𝑣

𝜑𝑥2
, and use 𝑐0

2 replaces the in the Payne model 
𝜇

𝜌𝑇
term. 

If the coefficient of the viscous term   𝜇0 is replaced by the viscosity coefficient inversely 

proportional to the density to obtain the model proposed by Kerner and 𝐾𝑜𝑛ℎÄ𝑎𝑢𝑠𝑒𝑟[9] in 

1993: 
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The model can better explain the traffic phenomena such as time-to-time stop and stability 

mutation in real traffic.  The rest of this paper is organized as follows. In the second part, we 

discuss the model and its derivation. In the third part, the types and stability of equilibrium 

points of the model are derived, and the classification and stability of equilibrium points of 

the model are discussed. The fourth part carries out numerical simulation. The fifth part is 

the summary of the full text. 

2 Model and its derivation 

Taking the density gradient continuous traffic flow model proposed by Kerner and 

KonhÄauser in 1993 as an example, the branching phenomenon of traffic flow is analyzed. 

The model expression is composed of the following two equations, an equation with local 

vehicle number conservation 

𝜕𝜌

𝜕𝑡
+
𝜕(𝜌𝑣)

𝜕𝑥
= 0                                                  (1) 

And an equation of motion: 

dv

dt
=

∂v

∂t
+ v

∂v

∂x
=

Ve(ρ)−v

T
−

c0
2

ρ

∂ρ

∂x
 +

μ

ρ

∂2v

∂x2
                              (2) 

It is assumed that the model has traveling wave solutions   z and v  z where z =x -ct  

and traveling wave velocity c  0. Using the above results and substituting them into 

equations (1) and (2), we can get 

 −𝑐𝜌𝑧 + 𝑞𝑧 = 0                                                         (3) 
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𝑇
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𝜇
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By deriving both ends of equation PV = q at the same time, it is obtained that: 

𝑞𝑧 = 𝜌𝑧𝑣 + 𝑣𝜌𝑧                                              (5) 

From (3) and (5): 

𝑣𝑧 =
𝑐𝜌𝑧

𝜌
−

𝑞𝜌𝑧

𝜌2
                                                        (6) 

(3) an integral can be obtained for Z. 

−𝑐𝜌 + 𝑞 = 𝑐𝑜𝑛𝑠𝑡 = 𝑞∗                                       (7) 

Bring (6), (7) into (4): 

𝜌𝑧𝑧 +
𝜌

𝑢
(
𝑐0
2𝜌

𝑞∗
−

𝑞∗

𝜌
) 𝜌𝑧 −

𝑝2[𝑞∗+𝑐𝜌−𝜌𝑣𝑒(𝜌)]

𝑢𝑇𝑞∗
= 0                               (8) 

Simplify the second order ordinary differential equation about )(z : 

𝜌𝑧𝑧 − 𝑔(𝜌, 𝑞
∗)𝜌𝑧 − 𝑓(𝜌, 𝑐, 𝑞

∗) = 0                                (9) 

Among them: 

𝑔(𝜌, 𝑞∗) =
𝜌

𝑢
(
𝑞∗

𝜌
−

𝑐0
2𝜌

𝑞∗
)                                       (10) 

𝑓(𝜌, 𝑐, 𝑞∗) = −
𝜌2

𝑞∗𝑢𝑇
[𝑞∗ + 𝑐𝜌 − 𝜌𝑣𝑒(𝜌)]                       (11) 

Let y=
𝑑𝑝

𝑑𝑧
, equation (9) can be transformed into a system of first-order ordinary differential 

equations 

{

𝑑𝜌

𝑑𝑧
= �̅�

𝑑�̅�

𝑑𝑧
= 𝑔(𝜌, 𝑞∗)�̅� + 𝑓(𝜌, 𝑐, 𝑞∗)

                                        (12) 

Substitute variables as follows:𝜃 =
1

𝜌𝑚−𝜌
 

By substituting them into (11), the following new traffic flow models can be obtained 

 {

d𝜃

d𝑧
= 𝑦

d𝑦

d𝑧
= [

2𝑦

𝜃
+ 𝐺(𝜃, 𝑞∗)] 𝑦 + 𝐹(𝜃, 𝑐, 𝑞∗)

                   (13) 

Among 

𝐺(𝜃, 𝑞∗) =
𝑝𝑚𝜃−1

𝑢𝜃
{

𝑞∗𝜃

𝑝𝑚𝜃−1
−

𝑐0
2(𝜌𝑚𝜃−1)

𝑞∗𝜃
}                        (14) 

𝐹(𝜃, 𝑐, 𝑞∗) =
−(1−𝜌𝑚𝜃)

2

𝑢𝑇𝜃𝑞∗
[𝜃𝑞∗ + (1 − 𝜃𝜌𝑚)(𝑣𝑒(𝜃) − 𝑐)]        (15) 
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3 The balance point type and stability of the model 

For the analysis of the equilibrium point, it is mainly determined from the equation group 

formed by equation (13). Let the right end of the equation of equation (13) be 0, it can be 

seen that 0y   and 0F  , thus the equilibrium point coordinates )0,( i , Then Taylor 

expansion of equation (13) according to the coordinates of the equilibrium point, the linear 

representation of the system can be obtained: 

{
𝜃′ = 𝑦

𝑦′ = 𝐺(𝜃𝑖 , 𝑞
∗)𝑦 + 𝐹′(𝜃𝑖,𝑐, 𝑞

∗)(𝜃 − 𝜃𝑖)
                               (16) 

Therefore, the Jacobian matrix of the system at the equilibrium point can be obtained as: 

𝐿 = [
0 1
𝐹𝑖
′ 𝐺𝑖

]                                            (17) 

The corresponding characteristic equation is: 

𝜆2 − 𝐺𝑖𝜆 − 𝐹�̇�
′ = 0                                                (18) 

where ),,(),,( ** qcGqcG ii   , ),,(F *qcF 、 . 

Since at the equilibrium point 0F , then 𝜃𝑖𝑞
∗ + (1 − 𝜌𝑚𝜃𝑖)(𝑣𝑒(𝜃𝑖) − 𝑐) = 0,then  we 

have 

𝐺(𝜃𝑖 , 𝑐, 𝑞
∗) =

𝑢𝜃𝑖

𝑝𝑚𝜃𝑖−1
[

𝑞∗𝜃𝑖

𝜌𝑚𝜃𝑖−1
−

𝑐0
2(𝜌𝑚𝜃𝑖−1)

𝑞∗𝜃𝑖
]                        (19) 

𝐹′ =
−(1−𝜌𝑚𝜃𝑖)

2

𝑢𝑞∗𝜃𝑖𝑇
[𝑞∗ −

𝜌𝑚𝜃𝑖𝑞
∗

1−𝜌𝑚𝜃𝑖
+ (1 + 𝜌𝑚𝜃𝑖)𝑣𝑒

′(𝜃𝑖)]                           (20) 

From the Hartman-Gorban linearization theorem, we know that the nonlinear system (13) 

and the linear system (16) have the same equilibrium point. Select the balance velocity 

function proposed in [9]: 

𝑉𝑒[𝜌] = 𝑣𝑓 {[1 + 𝑒𝑥𝑝 (

𝜌

𝜌𝑚
−0.25

0.06
)]

−1

− 3.72 × 10−6}                        (21) 

From 21: 

𝑉𝑒(𝜃) = 𝑣𝑓 {[1 + 𝑒𝑥𝑝 (12.5 −
1

0.06𝜌𝑚𝜃
)]
−1

− 3.72 × 10−6}                                 (22) 

Here, fv  represents the free flow velocity, and m  represents the maximum 

or congestion density. 

The values of the parameters in the model in this chapter are as follows: fv 30m/s, m

0.2 veh/m, T 10s, 0c 11m/s, 0 550. When   is equal to 0, this is a trivial balance 

point and has no practical meaning, so this article only needs to discuss other balance points. 

From the above discussion and (19)-(20), the type and stability of the equilibrium point can 

be judged, as shown in Table3. 1, where the equilibrium point is represented by 𝜃𝑖i  1, 2,3. 
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Table 1. Types of equilibrium points and their stability when model parameters are given,
'2

i 4 ii FG  , 2,1i  . 

 𝜃1 𝜃2 𝜃3 

 5.1696 9.1994 23.9752 

(c,𝑞∗)=(-1.26,0.2) 
0' iF  

,saddle point 

Unatable for z  

0i
, 0iG , spiral 

point  

Stable for z  

Unstable for z  

0' iF  

,saddle point 

Unatable for z  

 5.6287 7.113  

(c,𝑞∗)=(-1.371,0.64) 
0' iF  

,saddle point 

Unatable for z  

0i
, 0iG , spiral 

point  

Stable for z  

Unstable for z  

 

4 Numerical simulation 

The two sets of parameters in Table 1 are selected to simulate the stability of the nonlinear 

system (13) at the equilibrium point. The phase plan near the balance point is shown in Figure 

1. The equilibrium point is (𝜃𝑖 , 0), and 32,1i ， , 𝜃1 < 𝜃2 < 𝜃3. It can be seen from the figure 

that the balance point type of the system and the stability changes near the balance point are 

consistent with the theoretical analysis results in Table 1. 

 

a                                                                      b 

Fig. 1. Phase plane 𝜃  y trajectory diagram, (a).where traveling wave velocity c=-1.26,traveling 

wave parameter 2.0q*  . (b).where traveling wave velocity c=-1.371,traveling wave parameter 

q*=0.64. 

Figure a corresponds to the first group of data in Table 1. when z , the system is 

unstable at the equilibrium point𝜃1 ,0 and𝜃3 ,0, and its nearby trajectories are far away 

from this point. When z   , there are several spiral trajectories close to saddle point 

𝜃1  ,0 and tend to focus𝜃2  ,0; due to simultaneous influence of nearby saddle point 

𝜃3 ,0 Therefore, the spiral state of trajectory tending to focus is not obvious; The 

rotation state is not obvious; When z  , these trajectories are far away from the focus 

and eventually tend to infinity. These trajectories are the saddle point focus solution of the 

system. It shows that when z  , the system is stable at 𝜃2 ,0; When z  ,The system 

is unstable at 𝜃2 ,0. As long as the system becomes unstable, the state variable 𝜃 will tend 
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to infinity ,due to 𝜃 and 𝜌 In a monotonic increasing relationship, the vehicle density will 

eventually tend to the state of congestion. 

Figure b corresponds to the second group of data in Table 1, and also shows that the 

system is unstable at the equilibrium point𝜃1 ,0 when z . he spiral trajectory starting 

from ( 6.8,0) tends to focus 𝜃2 ,0 when z  , when z  , stay away from the Focus 

and finally form equal amplitude oscillation. It is further found that the spiral trajectory 

starting from ( 6.4,0 ) tends to change when z   Near the outermost circle of the curve 

shown by the black line; When z  , it tends to infinity. So there is a gap between the 

black line and the blue line have a limit cycle 

In order to facilitate the simulation, the space spacing is 160m and the time interval is 1s. 

The values of other parameters in the model are as follows: T=10s, 𝑐0=11m/s,u=550, 

𝑣𝑓 = 30𝑚/𝑠, 𝜌𝑚=0.2veh/m. 

Select the Hopf branch point 𝜌0 = 0.058789veh/m as the initial uniform density value, the 

applied amplitude is  for local small disturbance of  𝜌0  0.01  veh/ m, draw the density 

space-time diagram of the system, as shown in Figure 2: It can be seen from Fig. 4-2 that the 

amplitude of the initial small disturbance increases with time and evolves into constant 

amplitude periodic oscillation, which is the characteristic of the limit cycle solution. It also 

reflects the traffic phenomenon of oscillation and congestion, and stops the wave 

immediately. It also further verifies the correctness of the theoretical analysis. 

 

Fig. 2. Density space-time diagram with Hopf branch as initial value. 

5 Conclusion 

In this paper, the traveling wave solution of Kerner konhauser model is obtained by phase 

plane analysis method, and then the equilibrium point type and stability of the system are 

analyzed by the new model after substitution. Finally, by drawing the density space-time map 

and phase plan of the system, the traffic phenomena such as time-to-time stop and stability 

mutation on the expressway can be better explained 
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