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Abstract. Today's information processing not only faces an explosion of 

data volume and data dimensions, but also has to meet the growing user 

requirements for timeliness. The increase in the dimensionality of Kylin 

brings about the problem of dimensional explosion of multidimensional 

cubes, which puts great pressure on disk and network transmission. To solve 

the problem of dimensional explosion when building multidimensional 

cubes in Kylin, this paper proposes a bottom-up three-layer architecture that 

links from the hardware compression acceleration kernel layer to the query 

engine layer through the software driver layer. The software-driven layer is 

implemented through JNI, dynamic link libraries, and global shared resource 

pools to link the hardware-accelerated kernel layer to the query engine layer. 

Finally, comparative experiments on the performance of multidimensional 

cube building are conducted for heterogeneous clusters and normal clusters. 

The experimental results show that the hardware- accelerated cluster obtains 

a 3.7 times speedup ratio in build time and a 2 times speedup ratio in average 

query time, which can alleviate the IO pressure brought by Kylin during the 

dimensional explosion. 
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1 Introduction 
Although Kylin can perform multidimensional analysis of complex and massive data with 

sub-second latency, it also has some problems. Figure 3 (a) shows the flowchart of building 

a Cube in Kylin layer by layer. Each layer in the diagram consists of several MapReduce 

tasks, which are executed serially between each layer. 
This build process has more read and write operations on HDFS due to intermediate files 

between each Map task and Reduce task, and intermediate files between each layer of Map-

Reduce tasks, which need to be cached on HDFS, resulting in an inefficient overall Cube 

build process. The FPGA implementation of the compression algorithm, with good 

parallelism, has a performance that is several times better than software compression. Using 

the FPGA-implemented Deflate algorithm to compress the intermediate files of Map can 

effectively relieve the pressure of the cluster facing dimensional explosion. 
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2 Related work
Apache Hadoop is an open source big data processing and storage platform [1]. The Map 

node maps the entire problem into several subproblems, and the Reduce phase merges and 

filters the solutions of the subproblems in the Map phase. However, for IO-intensive tasks, 

the Map task requires frequent reading and writing of data between hard disks and memory, 

and between different machines. The frequent IO operations make the computing 

performance of the cluster receive a great limitation. In order to solve this one problem, Spark 

designed a model based on in-memory computing, Spark's RDD operator uses memory for 

storage and computation, avoiding the impact of frequent disk reads and writes on system 

performance [2].

The horizontal scaling of distributed computing platform means, increasing the number 

of cluster nodes; while the vertical scaling of distributed computing platform means 

extending the computing capacity of a single node by integrating more co-processors (e.g., 

FPGA, GPU, etc.) in a single node [3]. Heterogeneous computing platforms, i.e., platforms 

implemented by vertically scaling the computational capacity of individual nodes as 

mentioned above. The second half of this section describes the current state of research on 

heterogeneous computing platforms.

Chen et al. added FPGAs to the Hadoop cluster to filter the data stored in the Hadoop

distributed file system, and finally experimentally compared the system time overhead of 

FPGA acceleration over the native Hadoop system with increasing data volume at 1GB, 

10GB, 30GB, and 50GB [4]. Heterogeneous optimizations have also been proposed for the 

Spark distributed framework, and Huang proposed a scalable GATK parallelization 

acceleration scheme [5].Chen et al. achieved a modest scaling of 2.6x by implementing a 

next-generation DNA sequencing application [6].

Huanget al proposed a framework for deploying FPGA gas pedals in distributed 

environments (e.g., Yarn and Spark) [7]. The proposed framework is used to implement four 

different types of applications on a CPU-FPGA cluster. Although a generic API is provided 

to access FPGA resources, a layer of cluster management is added on top of Spark, which is 

dedicated to FPGA resources. As a result, this approach increases the overhead of the data 

flow stack and limits the performance of the system. Huang used FPGA technology to 

accelerate the write data process and resource scheduling algorithm of Hadoop [8].

3 Design and Implementation of Cubing‘s Acceleration

3.1 Design and Implementation of Deflate FPGA Core

Figure 2 shows the overall architecture of the hardware compression acceleration kernel layer. 

The main functions of the KernelPool are to initialize, manage and maintain the OpenCL 

context and kernel resources; to implement algorithms such as Huffman tree building, which 

is not suitable for FPGA development boards (e.g., Huffman tree building process is serial 

and difficult to implement in parallel). Transfer the data to be compressed to the FPGA. 

Receive the compressed data from the FPGA; And send the compressed data to 

DeflateKernel via Kafka. 

DeflateKernel does the most time-consuming LZ77 coding tasks and is written in the C-

like language provided by OpenCL. The compiler maps the DeflateKernel to a program that 

can run on the board based on the BSP provided by the FPGA developer. The kernel program 

is then burned to run on the development board.
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Fig. 2. Architecture diagram of the hardware compression acceleration layer. 

Experiments on the compression ratio of the FPGA compression cores implemented in 

this paper based on the Calgary standard evaluation set are floating from 2.01 to 2.62. The 

average compression ratio is 2.336. Comparing with previous similar studies, it is known that 

Alterna OpenCL implemented a compression ratio of 2.17 [9] and Verilog's scheme achieved 

a compression ratio of 2.18 [10]. Compared to CPU schemes, Intel's compression ratio is 

2.18 [11].

The results of the compression speed comparison experiments are shown in Table 2. On 

the Calgary dataset, Enwik8 and CanterBury datasets, the FPGA-based implementation of 

the hardware compression kernel compresses 8 times faster than the CPU implementation of 

the Deflate algorithm, with a 9 times speedup ratio on Enwik7 and a slightly worse 

performance of 7 times on Silesia's dataset.

Table 2. Compression speed comparison test results. 

Throughput (MB/s)

Speedup
Software FPGA

Calgary 366 2938 8.03

Canterbury 348 2788 8.01

Enwik7 332 3002 9.04

Enwik8 357 2899 8.12

Silesia 373 2786 7.4

3.2 Integration of Hadoop and DeflateKernel

Figure 3(a) shows the problem with Kylin's Cubing build engine, which generates a large 

amount of intermediate data. The intermediate files are stored in HDFS. Compressing the 

intermediate files of Map can reduce the amount of data read and write to disk and the amount

of data transferred over the network, thus reducing IO time and improving cluster 

performance.  Figure 3(b) illustrates the layer-by-layer construction process of Cube under 

acceleration. Unlike Figure 3(a) , the intermediate files output from the Map task are 

compressed, which can effectively relieve the pressure on disk and network reads and writes, 

thus achieving the purpose of accelerating the Map-Reduce tasks in the Hadoop cluster.

3.3 Design and implementation of by layer cubing 

The star model constructed by selecting dwd_fact_order_detail as the fact table and 

dwd_dim_base_province, dim_sku, and dim_user_info_his three dimension tables is 
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illustrated. Where the dimensions are selected as region [reg], province [pro], gender [gen] 

and brand [tm]. All dimensions on it are aggregated, and there are 16 Cuboid in total, as 

shown in Figure 4. 

(a)                                                              (b)

Fig. 3. Traditional Cubing and Accelerated Cubing. 

Fig. 4. By layer Cubing. 

There are four combinations of [tm], [pro], [gen], and [reg] in one dimension; six 

combinations in two dimensions; four combinations of [tm, pro ,gen ], [tm, gen, reg] , [pro, 

reg, gen], and [tm, pro, reg] in three dimensions; and one each in zero and four dimensions.

The multidimensional cuboid is constructed layer by layer as follows: the original data is 

input, run a round of Map-Reduce task to construct Base Cuboid, i.e., 4-D Cuboid. Then 4-

D Cuboid is used as input to start the next round of Map-Reduce task, because there are four 

dimensions, four Cuboids will be generated. The next process is similar in principle, and the 

3-D Cuboid is used as input to get six 2-D Cuboids. until finally the 0-D Cuboid is obtained.

4 Experimental result and analysis
Figure 5 shows the average build time of the Cube for the two scenarios. The average100 is 

the Cube build time per 100 thousand data volume for 5 experiments using a weighted 

average. The Cube has the advantage of building more layers of MR tasks, generating more 

intermediate files, and calling the hardware compression core multiple times. However, you 

can see that the data volume from 100000 to 200000 does not take more than 2x, but from 

200000 to 500000 and from 100000 to 400000 is significantly more than 2.5x and 4x, 

indicating that the performance decreases as the data volume increases and the cluster load 

increases. The speedup ratio decreases with increasing data volume because the Cube 

construction needs to start more Map tasks as the data size becomes larger.
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Fig. 5. Build time comparison results. 

At this stage, there is only one FPGA accelerator board in the experimental environment 

used in this paper. When the accelerator board is occupied, Map tasks that do not obtain 

acceleration resources are waiting for the release of acceleration resources, and the potential 

of the cluster accelerable can be improved by adding an accelerator board. The cube building 

model based on query logs proposed in this paper is 3.7159 times longer than the cube 

building time of hardware and software co-acceleration in terms of first building time. the 

average SQL query time is tested by writing 35 SQL statements for testing. The average 

query time was recorded in the log for each experiment, and the "Average Query Time" was 

calculated by calling Kylin's Restful API.

Fig. 6. Average Query time comparison results. 

From Figure 6, we can see that the average query time of the cluster with hardware and 

software co-acceleration is slightly better, but the acceleration is not obvious, because the 

query principle of Kylin reads precomputed Cube from HBase, and the average acceleration 

rate is 1.98.
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