
FPGA-based heterogeneous acceleration study
for multidimensional cubing

Yuan Meng, Jun Yang*, and Jun Li

School of Information Science and Engineering, Yunnan University, Kunming, China

Abstract. Today's information processing not only faces an explosion of

data volume and data dimensions, but also has to meet the growing user

requirements for timeliness. The increase in the dimensionality of Kylin

brings about the problem of dimensional explosion of multidimensional

cubes, which puts great pressure on disk and network transmission. To solve

the problem of dimensional explosion when building multidimensional

cubes in Kylin, this paper proposes a bottom-up three-layer architecture that

links from the hardware compression acceleration kernel layer to the query

engine layer through the software driver layer. The software-driven layer is

implemented through JNI, dynamic link libraries, and global shared resource

pools to link the hardware-accelerated kernel layer to the query engine layer.

Finally, comparative experiments on the performance of multidimensional

cube building are conducted for heterogeneous clusters and normal clusters.

The experimental results show that the hardware- accelerated cluster obtains

a 3.7 times speedup ratio in build time and a 2 times speedup ratio in average

query time, which can alleviate the IO pressure brought by Kylin during the

dimensional explosion.

Keywords: Deflate, FPGA, OpenCL, Kylin, OLAP.

1 Introduction
Although Kylin can perform multidimensional analysis of complex and massive data with

sub-second latency, it also has some problems. Figure 3 (a) shows the flowchart of building

a Cube in Kylin layer by layer. Each layer in the diagram consists of several MapReduce

tasks, which are executed serially between each layer.
This build process has more read and write operations on HDFS due to intermediate files

between each Map task and Reduce task, and intermediate files between each layer of Map-

Reduce tasks, which need to be cached on HDFS, resulting in an inefficient overall Cube

build process. The FPGA implementation of the compression algorithm, with good

parallelism, has a performance that is several times better than software compression. Using

the FPGA-implemented Deflate algorithm to compress the intermediate files of Map can

effectively relieve the pressure of the cluster facing dimensional explosion.

ITM Web of Conferences 47, 02047 (2022)

CCCAR2022

https://doi.org/10.1051/itmconf/20224702047

* Corresponding author: junyang@ynu.edu.cn

 © The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative
Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

2 Related work
Apache Hadoop is an open source big data processing and storage platform [1]. The Map

node maps the entire problem into several subproblems, and the Reduce phase merges and

filters the solutions of the subproblems in the Map phase. However, for IO-intensive tasks,

the Map task requires frequent reading and writing of data between hard disks and memory,

and between different machines. The frequent IO operations make the computing

performance of the cluster receive a great limitation. In order to solve this one problem, Spark

designed a model based on in-memory computing, Spark's RDD operator uses memory for

storage and computation, avoiding the impact of frequent disk reads and writes on system

performance [2].

The horizontal scaling of distributed computing platform means, increasing the number

of cluster nodes; while the vertical scaling of distributed computing platform means

extending the computing capacity of a single node by integrating more co-processors (e.g.,

FPGA, GPU, etc.) in a single node [3]. Heterogeneous computing platforms, i.e., platforms

implemented by vertically scaling the computational capacity of individual nodes as

mentioned above. The second half of this section describes the current state of research on

heterogeneous computing platforms.

Chen et al. added FPGAs to the Hadoop cluster to filter the data stored in the Hadoop

distributed file system, and finally experimentally compared the system time overhead of

FPGA acceleration over the native Hadoop system with increasing data volume at 1GB,

10GB, 30GB, and 50GB [4]. Heterogeneous optimizations have also been proposed for the

Spark distributed framework, and Huang proposed a scalable GATK parallelization

acceleration scheme [5].Chen et al. achieved a modest scaling of 2.6x by implementing a

next-generation DNA sequencing application [6].

Huanget al proposed a framework for deploying FPGA gas pedals in distributed

environments (e.g., Yarn and Spark) [7]. The proposed framework is used to implement four

different types of applications on a CPU-FPGA cluster. Although a generic API is provided

to access FPGA resources, a layer of cluster management is added on top of Spark, which is

dedicated to FPGA resources. As a result, this approach increases the overhead of the data

flow stack and limits the performance of the system. Huang used FPGA technology to

accelerate the write data process and resource scheduling algorithm of Hadoop [8].

3 Design and Implementation of Cubing‘s Acceleration

3.1 Design and Implementation of Deflate FPGA Core

Figure 2 shows the overall architecture of the hardware compression acceleration kernel layer.

The main functions of the KernelPool are to initialize, manage and maintain the OpenCL

context and kernel resources; to implement algorithms such as Huffman tree building, which

is not suitable for FPGA development boards (e.g., Huffman tree building process is serial

and difficult to implement in parallel). Transfer the data to be compressed to the FPGA.

Receive the compressed data from the FPGA; And send the compressed data to

DeflateKernel via Kafka.

DeflateKernel does the most time-consuming LZ77 coding tasks and is written in the C-

like language provided by OpenCL. The compiler maps the DeflateKernel to a program that

can run on the board based on the BSP provided by the FPGA developer. The kernel program

is then burned to run on the development board.

��������	�
��	� =
	
��_�	�������_�	��

	
��_�	��
× ���% (1)

ITM Web of Conferences 47, 02047 (2022)

CCCAR2022

https://doi.org/10.1051/itmconf/20224702047

2

Fig. 2. Architecture diagram of the hardware compression acceleration layer.

Experiments on the compression ratio of the FPGA compression cores implemented in

this paper based on the Calgary standard evaluation set are floating from 2.01 to 2.62. The

average compression ratio is 2.336. Comparing with previous similar studies, it is known that

Alterna OpenCL implemented a compression ratio of 2.17 [9] and Verilog's scheme achieved

a compression ratio of 2.18 [10]. Compared to CPU schemes, Intel's compression ratio is

2.18 [11].

The results of the compression speed comparison experiments are shown in Table 2. On

the Calgary dataset, Enwik8 and CanterBury datasets, the FPGA-based implementation of

the hardware compression kernel compresses 8 times faster than the CPU implementation of

the Deflate algorithm, with a 9 times speedup ratio on Enwik7 and a slightly worse

performance of 7 times on Silesia's dataset.

Table 2. Compression speed comparison test results.

Throughput (MB/s)

Speedup
Software FPGA

Calgary 366 2938 8.03

Canterbury 348 2788 8.01

Enwik7 332 3002 9.04

Enwik8 357 2899 8.12

Silesia 373 2786 7.4

3.2 Integration of Hadoop and DeflateKernel

Figure 3(a) shows the problem with Kylin's Cubing build engine, which generates a large

amount of intermediate data. The intermediate files are stored in HDFS. Compressing the

intermediate files of Map can reduce the amount of data read and write to disk and the amount

of data transferred over the network, thus reducing IO time and improving cluster

performance. Figure 3(b) illustrates the layer-by-layer construction process of Cube under

acceleration. Unlike Figure 3(a) , the intermediate files output from the Map task are

compressed, which can effectively relieve the pressure on disk and network reads and writes,

thus achieving the purpose of accelerating the Map-Reduce tasks in the Hadoop cluster.

3.3 Design and implementation of by layer cubing

The star model constructed by selecting dwd_fact_order_detail as the fact table and

dwd_dim_base_province, dim_sku, and dim_user_info_his three dimension tables is

ITM Web of Conferences 47, 02047 (2022)

CCCAR2022

https://doi.org/10.1051/itmconf/20224702047

3

illustrated. Where the dimensions are selected as region [reg], province [pro], gender [gen]

and brand [tm]. All dimensions on it are aggregated, and there are 16 Cuboid in total, as

shown in Figure 4.

(a) (b)

Fig. 3. Traditional Cubing and Accelerated Cubing.

Fig. 4. By layer Cubing.

There are four combinations of [tm], [pro], [gen], and [reg] in one dimension; six

combinations in two dimensions; four combinations of [tm, pro ,gen], [tm, gen, reg] , [pro,

reg, gen], and [tm, pro, reg] in three dimensions; and one each in zero and four dimensions.

The multidimensional cuboid is constructed layer by layer as follows: the original data is

input, run a round of Map-Reduce task to construct Base Cuboid, i.e., 4-D Cuboid. Then 4-

D Cuboid is used as input to start the next round of Map-Reduce task, because there are four

dimensions, four Cuboids will be generated. The next process is similar in principle, and the

3-D Cuboid is used as input to get six 2-D Cuboids. until finally the 0-D Cuboid is obtained.

4 Experimental result and analysis
Figure 5 shows the average build time of the Cube for the two scenarios. The average100 is

the Cube build time per 100 thousand data volume for 5 experiments using a weighted

average. The Cube has the advantage of building more layers of MR tasks, generating more

intermediate files, and calling the hardware compression core multiple times. However, you

can see that the data volume from 100000 to 200000 does not take more than 2x, but from

200000 to 500000 and from 100000 to 400000 is significantly more than 2.5x and 4x,

indicating that the performance decreases as the data volume increases and the cluster load

increases. The speedup ratio decreases with increasing data volume because the Cube

construction needs to start more Map tasks as the data size becomes larger.

ITM Web of Conferences 47, 02047 (2022)

CCCAR2022

https://doi.org/10.1051/itmconf/20224702047

4

Fig. 5. Build time comparison results.

At this stage, there is only one FPGA accelerator board in the experimental environment

used in this paper. When the accelerator board is occupied, Map tasks that do not obtain

acceleration resources are waiting for the release of acceleration resources, and the potential

of the cluster accelerable can be improved by adding an accelerator board. The cube building

model based on query logs proposed in this paper is 3.7159 times longer than the cube

building time of hardware and software co-acceleration in terms of first building time. the

average SQL query time is tested by writing 35 SQL statements for testing. The average

query time was recorded in the log for each experiment, and the "Average Query Time" was

calculated by calling Kylin's Restful API.

Fig. 6. Average Query time comparison results.

From Figure 6, we can see that the average query time of the cluster with hardware and

software co-acceleration is slightly better, but the acceleration is not obvious, because the

query principle of Kylin reads precomputed Cube from HBase, and the average acceleration

rate is 1.98.

References
1. Kumar Nitin. Big Data Using Hadoop and Hive [M].Mercury Learning and Information:

2021-03-24.

2. Daniel C. M. de Oliveira, Ji Liu, Esther Pacitti, H. V. Jagadish. Data-Intensive Workflow

Management: For Clouds and Data-Intensive and Scalable Computing Environments

[M].Morgan & Claypool Publishers: 2019-05-13.

3. D. Singh and C. K. Reddy, A survey on platforms for big data analytics [J], Journal of

Big Data, 2014, issue 2, pp.8

ITM Web of Conferences 47, 02047 (2022)

CCCAR2022

https://doi.org/10.1051/itmconf/20224702047

5

4. Cheng, Zhang, et al. Research on efficient data filtering technology based on FPGA [J].

Microelectronics and Computers, 2017, 34(12)130-

133+137.DOI:10.19304/j.cnki.issn1000-7180.2017.12.027.

5. Huang., Design and implementation of a parallel acceleration scheme for GATK gene

analysis software [D].Huazhong University of Science and

TechnoLogy,2019.DOI:10.27157/d.cnki.ghzku.2019.004595.

6. Chen Y-T, et al. When Spark meets FPGAs: a case study for next-generation DNA

sequencing acceleration. In: 8th USENIX Workshop on Hot Topics in Cloud Computing

(HotCloud 16); 2016.

7. Huang M , Wu D , Yu C H , et al. Programming and Runtime Support to Blaze FPGA

Accelerator Deployment at Datacenter Scale. Proc ACM Symp Cloud Comput,

2016:456-469.

8. Huang, Research on YARN heterogeneous cluster management method based on FPGA

acceleration [D]. Huazhong University of Science and Technology, 2017.

9. Mohamed S, Abdelfattah, Andrei Hagiescu, Deshanand Singh. Gzip on a Chip: High

Performance Lossless Data Compression on FPGAs using OpenCL[C]// International

Workshop on Opencl. ACM, 2014:4.

10. Craft D J. A fast hardware data compression algorithm and some algorithmic extensions

[J]. IBM Journal of Research and Development, 1998, 42(6): 733-746.

11. Gopal V, Guilford J, Feghali W, et al. High Performance DEFLATE on Intel

Architecture Processors (2011) [J].

ITM Web of Conferences 47, 02047 (2022)

CCCAR2022

https://doi.org/10.1051/itmconf/20224702047

6

