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Abstract. A discrete time Boolean asynchronous system consists in a function
Φ : {0, 1}n → {0, 1}n which iterates its coordinates Φ1, ...,Φn independently of
each other. The durations of computation of Φ1, ...,Φn are supposed to be un-
known. The analysis of such systems has as main challenge characterizing their
dynamics in conditions of uncertainty. For this, a very cited classical paper is
[1], where the fundamental concept of speed independence is introduced. The
point is, like in most of these cases, that the engineers receive from such a work
intuition, combined with a certain lack of rigor. Our aim is to try a mathemat-
ical reinforcement of the Muller’s theory of the asynchronous circuits, which
should be a modest homage, over time, to its authors.
A list of models used in asynchronous systems theory is given in [3]. The
mathematical tools used in this analysis may be found in [2].
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1 Preliminaries

Definition 1.1 The binary Boole (or Boolean) algebra is the set B = {0, 1} endowed with
the following laws, see Table 1: ’ ’ is called (logical) complement, ’ · ’ is the product, and

Table 1. The laws of B.

· 0 1 ∪ 0 1
0 1 0 0 0 0 0 1
1 0 1 0 1 1 1 1

’∪’ is the union. These laws induce on Bn laws which act coordinatewisely, and have the
same notations.

Definition 1.2 For Φ : Bn → Bn and λ ∈ Bn, we define the function Φλ : Bn → Bn, called
the λ−iterate of Φ, by ∀µ ∈ Bn,∀i ∈ {1, ..., n},

Φλi (µ) =
{
µi, i f λi = 0,
Φi(µ), i f λi = 1.
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Definition 1.3 The function α : N −→ Bn, N ∋ k → αk ∈ Bn is called computation
function. N is the time set, and k is the time (instant). If one of the equivalent properties1

∀i ∈ {1, ..., n}, the sets {k|k ∈ N, αk
i = 1} are infinite,

∀k ∈ N,∃k′ > k, αk ∪ ... ∪ αk′ = (1, ..., 1)

is true, α is said to be progressive. The set of the progressive computation functions is
denoted with Πn.

Remark 1.1 The λ−iterate Φλ shows how the function Φ is computed: Φλ computes only
these coordinates Φi, i ∈ {1, ..., n} for which λi = 1, and the rest of the coordinates keep
their values. These are the asynchronous computations of the Boolean functions, considered
timelessly.

The timeful asynchronous computation of Φ makes use of αk−iterates Φα
k
, showing how

and when (due to k ∈ N) Φ is computed. The requirement of progressiveness of α refers to
the progress of time. One possible interpretation of the statement αk

i = 1 is: time advances
on the i−th coordinate with 1 time unit.

Remark 1.2 If α : N→ Bn is periodic: ∃p ≥ 1,∀k ∈ N,

αk = αk+p, (1)

then its progressiveness is equivalent with ∀k ∈ N,

αk ∪ ... ∪ αk+p−1 = (1, ..., 1). (2)

The limit situation in this statement is represented by p = 1 and the progressive computation
function ∀k ∈ N, αk = (1, ..., 1). If we replace the periodicity of α with the more general
property of eventual periodicity, which is: ∃p ≥ 1,∃k′ ∈ N,∀k ≥ k′, (1) holds, then the
progressiveness of α is equivalent with: ∀k ≥ k′, (2) is true.

Definition 1.4 We consider the function Φ : Bn → Bn, the progressive computation function
α ∈ Πn and µ ∈ Bn. The function ∀k ∈ N,

ϕα(µ, k) =
{

µ, i f k = 0,
Φα

k−1
(ϕα(µ, k − 1)), i f k ≥ 1

is called flow. In this context Bn is called state space and its elements are called states,
function Φ is called system, or generator function (of ϕ), x : N −→ Bn given by

x(k) = ϕα(µ, k)

is called state function, and µ is the initial value of x, or the initial state.

Definition 1.5 For any k′ ∈ N, the forgetful function σk′ : (Bn)N → (Bn)N is defined as
∀x : N→ Bn,∀k ∈ N,

σk′ (x)(k) = x(k + k′).

Remark 1.3 σk′ shifts the function x : N → Bn with k′ time units. Its name comes from the
fact that for any k′ ≥ 1, σk′ (x) forgets the first values x(0), ..., x(k′ − 1) of x.

Theorem 1.1 (Composition) ∀α ∈ Πn,∀µ ∈ Bn,∀µ′ ∈ Bn,∀k′ ∈ N,

ϕα(µ, k′) = µ′ =⇒ ∀k ∈ N, ϕα(µ, k + k′) = ϕσ
k′ (α)(µ′, k). (3)

1The proof of the equivalence of these properties is omitted.
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Proof. We suppose that ϕα(µ, k′) = µ′ and we use the induction on k ∈ N. For k = 0 the
equality holds, thus we can suppose that it is true for k.We get

ϕα(µ, k + k′ + 1) = Φα
k+k′

(ϕα(µ, k + k′)) = Φα
k+k′

(ϕσ
k′ (α)(µ′, k))

= Φ(σk′ (α))k
(ϕσ

k′ (α)(µ′, k)) = ϕσ
k′ (α)(µ′, k + 1).

Remark 1.4 Equivalently, (3) can be written as:

σk′ (ϕα(µ, ·))(k) = ϕα(µ, k + k′) = ϕσ
k′ (α)(ϕα(µ, k′), k), (4)

with arbitrary α ∈ Πn, µ ∈ Bn, k ∈ N, and k′ ∈ N.

Definition 1.6 The set
Oα(µ) = {ϕα(µ, k)|k ∈ N}

is called orbit, µ ∈ Bn is the initial value of the orbit and α ∈ Πn is its computation function.

Example 1.1 Timelessly, the dynamics of these systems is described by directed graphs
called state portraits. In this example, the system Φ : B2 → B2,Φ(0, 0) = Φ(1, 1) =
(1, 1),Φ(0, 1) = (0, 0),Φ(1, 0) = (1, 0)

(1, 0)

(0, 1) -� (0, 0)

6

- (1, 1)

starts from the initial value (0, 0). In the state portrait, we underline µi the coordinates i ∈
{1, 2} so called unstable (or excited) which, by computation, change their value. The arrows
indicate the transfer from one state to the other. If Φ1(0, 0) is computed first, the transfer
(0, 0) → (1, 0) takes place and the system remains in (1, 0), which is a rest position. And
if Φ1(0, 0),Φ2(0, 0) are computed at the same time, the transfer (0, 0) → (1, 1) takes place
and the system remains in (1, 1), which is a rest position too. If Φ2(0, 0) is computed first the
transfer (0, 0)→ (0, 1) takes place and the possibility exists that the system switches between
(0, 0) and (0, 1) infinitely many times or perhaps, after finitely many such switches, that it
eventually reaches one of the rest positions (1, 0) or (1, 1). The durations of computation of
Φ1,Φ2 are unknown, meaning that all these transfers are possible, in other words the timeful
analysis of the system is made by considering α as parameter.

2 Invariance
Theorem 2.1 The system Φ : Bn → Bn and the set A ⊂ Bn, A , ∅ are considered. The
following statements are equivalent:

∀α ∈ Πn,∀µ ∈ A,Oα(µ) ⊂ A, (5)

∀λ ∈ Bn,Φλ(A) ⊂ A. (6)

Proof. (5)=⇒(6) Let λ ∈ Bn, µ ∈ A arbitrary, fixed. We take α ∈ Πn arbitrary, with α0 = λ.
Then:

Φλ(µ) = ϕα(µ, 1)
(5)
∈ A.
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(6)=⇒(5) We take α ∈ Πn, µ ∈ A arbitrary, fixed and we prove (5) by induction on k. For
k = 0, µ = ϕα(µ, 0) ∈ A and we suppose now that ϕα(µ, k) ∈ A. Then:

ϕα(µ, k + 1) = Φα
k
(ϕα(µ, k))

(6)
∈ A.

Definition 2.1 If the set A fulfills one of (5), (6), then it is called invariant.

Remark 2.1 Invariance states, in a timeful way, and also in an equivalent timeless way, that
any orbit with the initial value in A remains in A.

Example 2.1 We look again at the state portrait from Example 1.1. We note there the in-
variant sets {(1, 0)}, {(1, 1)} and B2.

3 Omega limit sets
Notation 3.1 The system Φ : Bn → Bn, α ∈ Πn and µ ∈ Bn are given. We denote with
ωαp(µ) ⊂ Bn, p ∈ N the sets

ωαp(µ) = {ϕα(µ, k)|k ≥ p}.

Theorem 3.1 We have

Oα(µ) = ωα0 (µ) ⊃ ωα1 (µ) ⊃ ... ⊃ ωαp(µ) ⊃ ωαp+1(µ) ⊃ ...

and k′ ∈ N exists with the property ωαk′ (µ) = ω
α
k′+1(µ) = ...

Proof. The inclusions are obvious and the property results from the fact that there are finitely
many subsets of Oα(µ).

Definition 3.1 The set ωαk′ (µ) from the previous theorem is denoted ωα(µ) and is called
omega limit, or terminal. In general, a set A ⊂ Bn, A , ∅ is called omega limit or ter-
minal if α ∈ Πn and µ ∈ Bn exist with the property that A = ωα(µ).

Notation 3.2 The set of the omega limit sets of Φ is denoted ΩΦ :

ΩΦ = {ω
α(µ)|α ∈ Πn, µ ∈ Bn}.

Theorem 3.2 Let α ∈ Πn and µ ∈ Bn.
(a) k′ ∈ N exists such that

ωα(µ) = {ϕα(µ, k)|k ≥ k′}. (7)

(b) We have

ωα(µ) = {ν|ν ∈ Bn, the set {k|k ∈ N, ϕα(µ, k) = ν} is infinite}.

(c) If k′ satisfies either of ∀k1 ≥ k′,∀k2 ≥ k′,

{ϕα(µ, k)|k ≥ k1} = {ϕ
α(µ, k)|k ≥ k2},

respectively ∀k1 ≥ k′,
{ϕα(µ, k)|k ≥ k1} = {ϕ

α(µ, k)|k ≥ k′},

then (7) is true.
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Proof. (a) and (c) follow directly from Definition 3.1, we prove (b). We know that ωα(µ) ⊂
Oα(µ). On the other hand the supposition that we might have ν ∈ ωα(µ) with the set {k|k ∈
N, ϕα(µ, k) = ν} finite brings the contradiction ∀k′′ > max{k|k ∈ N, ϕα(µ, k) = ν},

ωα(µ) ⊋ ωαk′′ (µ).

Remark 3.1 We conclude that the omega limit set is the nonempty subset of the orbit
ωα(µ) ⊂ Oα(µ) which contains the points reached by the state x(k) = ϕα(µ, k) infinitely
many times. In particular, the periodicity of the state function: ∃p ≥ 1,∀k ∈ N,

ϕα(µ, k) = ϕα(µ, k + p), (8)

when all its values are reached infinitely many times, implies Oα(µ) = ωα(µ). And in case of
eventual periodicity: ∃p ≥ 1,∃k′ ∈ N,∀k ≥ k′, (8) is true, we get Oα(µ) ⊃ ωαk′ (µ) = ω

α(µ).

Example 3.1 The system Φ : B2 → B2 from Example 1.1 has three omega limit sets,
{(0, 1), (0, 0)}, {(1, 1)}, {(1, 0)} ∈ ΩΦ.

Theorem 3.3 We ask that for arbitrary α ∈ Πn, β ∈ Πn, µ ∈ Bn, µ′ ∈ Bn, k1 ≤ k2, we have
∀k ≥ k2,

ϕα(µ, k) = ϕβ(µ′, k − k1).

Then ωα(µ) = ωβ(µ′).

Proof. We fix such arbitrary α, β, µ, µ′, k1, k2 and we get the existence of k′ ∈ N with

ωα(µ) = {ϕα(µ, k)|k ≥ k′}.

Let k′′ ≥ max{k2, k′} arbitrary. We infer

ωα(µ) = {ϕα(µ, k)|k ≥ k′′} = {ϕβ(µ′, k − k1)|k ≥ k′′}

= {ϕβ(µ′, k)|k ≥ k′′ − k1} = ω
β
k′′−k1

(µ′),

ωα(µ) = {ϕα(µ, k)|k ≥ k′′ + 1} = {ϕβ(µ′, k − k1)|k ≥ k′′ + 1}

= {ϕβ(µ′, k)|k ≥ k′′ − k1 + 1} = ωβk′′−k1+1(µ′),

...

i.e. ωβk′′−k1
(µ′) = ωβk′′−k1+1(µ′) = ... = ωβ(µ′) and finally ωα(µ) = ωβ(µ′).

Theorem 3.4 We suppose that A ∈ ΩΦ is terminal and ∃µ ∈ A,∃α ∈ Πn, ω
α(µ) ∧ A , ∅.

Then Oα(µ) ∨ A is terminal.

Proof. The hypothesis states the existence of β ∈ Πn, µ
′ ∈ Bn with A = ωβ(µ′), and we

suppose that
ωα(µ) = {ϕα(µ, k)|k ≥ k′}, (9)

ωβ(µ′) = {ϕβ(µ′, k)|k ≥ k′′} (10)

for suitably chosen k′ ∈ N, k′′ ∈ N. Let

ν
hyp
∈ ωα(µ) ∧ A (11)
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arbitrary. Then k′1 ≥ k′ exists with

ϕα(µ, k′1)
(9),(11)
= ν,

k′′1 ≥ 1 exists such that
α0 ∪ ... ∪ αk′′1 −1 = (1, ..., 1),

and k′′′1 ∈ N exists also with

Oα(µ) = {ϕα(µ, k)|k ∈ {0, ..., k′′′1 }}.

We fix a k1 ≥ max{k′1, k
′′
1 , k

′′′
1 } from infinitely many such possibilities satisfying

ϕα(µ, k1) = ν, (12)

α0 ∪ ... ∪ αk1−1 = (1, ..., 1), (13)

Oα(µ) = {ϕα(µ, k)|k ∈ {0, ..., k1}}. (14)

We have also the existence of k2 ≥ k′′ with

ϕβ(µ′, k2)
(10),(11)
= ν (15)

and we know that
µ

hyp
∈ A. (16)

Some k′3 ≥ k2 exists that fulfills

ωβ(µ′) = {ϕβ(µ′, k)|k ∈ {k2, ..., k′3}},

and some k′′3 ≥ k′′ exists with

ϕβ(µ′, k′′3 )
(10),(16)
= µ.

We fix k3 ≥ max{k′3, k
′′
3 } from infinitely many such possibilities, that satisfies

ωβ(µ′) = {ϕβ(µ′, k)|k ∈ {k2, ..., k3}}, (17)

ϕβ(µ′, k3) = µ. (18)

We define γ : N→ Bn by
∀k ∈ {0, ..., k1 − 1}, γk = αk, (19)

∀k ∈ {k1, ..., k1 − k2 + k3 − 1}, γk = βk−k1+k2 , (20)

...

and by the fact that it is periodic, with the period T = k1 − k2 + k3 : ∀k ∈ N,

γk = γk+T . (21)

We have γ ∈ Πn, because

γ0 ∪ ... ∪ γk1−1 ∪ ... ∪ γk1−k2+k3−1 ≥ γ0 ∪ ... ∪ γk1−1 (19)
= α0 ∪ ... ∪ αk1−1 (13)

= (1, ..., 1).

From ∀k ∈ {0, ..., k1 − 1},
ϕγ(µ, k)

(19)
= ϕα(µ, k), (22)

ϕγ(µ, k1) = ϕα(µ, k1)
(12)
= ν

(15)
= ϕβ(µ′, k2), (23)
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∀k ∈ {k1, ..., k1 − k2 + k3 − 1},

ϕγ(µ, k) = ϕσ
k1 (γ)(ϕγ(µ, k1), k − k1)

(20),(23)
= ϕσ

k2 (β)(ϕβ(µ′, k2), k − k1)

= ϕβ(µ′, k − k1 + k2), (24)

ϕγ(µ, k1 − k2 + k3) = ϕβ(µ′, k3)
(18)
= µ = ϕγ(µ, 0), (25)

and from (21) we can prove by induction on k ∈ N the periodicity of ϕγ(µ, ·) : ∀k ∈ N,

ϕγ(µ, k) = ϕγ(µ, k + T ).

Moreover:

Oα(µ) ∨ A
(14),(17)
= {ϕα(µ, k)|k ∈ {0, ..., k1}} ∨ {ϕ

β(µ′, k)|k ∈ {k2, ..., k3}}

(22),(23)
= {ϕγ(µ, k)|k ∈ {0, ..., k1}} ∨ {ϕ

β(µ′, k − k1 + k2)|k ∈ {k1, ..., k1 − k2 + k3}}

(24),(25)
= {ϕγ(µ, k)|k ∈ {0, ..., k1}} ∨ {ϕ

γ(µ, k)|k ∈ {k1, ..., k1 − k2 + k3}}

= {ϕγ(µ, k)|k ∈ {0, ..., k1 − k2 + k3}} = Oγ(µ) = ωγ(µ),

and when writing the last equality we have used the periodicity of ϕγ(µ, ·).

4 Equivalent omega limit sets
Definition 4.1 We say that the omega limit sets A ∈ ΩΦ, B ∈ ΩΦ are equivalent, and we
denote this by A ⊥ B, if

∃δ ∈ Πn,∃ν ∈ A,Oδ(ν) ∧ B , ∅, (26)

∃δ′ ∈ Πn,∃ν
′ ∈ B,Oδ

′

(ν′) ∧ A , ∅ (27)

hold.

Remark 4.1 If the omega limit sets A, B satisfy A ∧ B , ∅, in particular if A ⊂ B, then
A ⊥ B. This happens because in (26), (27) we can choose ν ∈ A ∧ B, ν′ ∈ A ∧ B and
δ ∈ Πn, δ

′ ∈ Πn arbitrary.

Theorem 4.1 The relation ⊥⊂ ΩΦ ×ΩΦ is an equivalence.

Proof. The refflexivity and the symmetry of ⊥ are obvious, we prove transitivity now. We
have the existence of α ∈ Πn, β ∈ Πn, γ ∈ Πn, µ ∈ Bn, µ′ ∈ Bn, µ′′ ∈ Bn and k′ ∈ N, k′′ ∈
N, k′′′ ∈ N that satisfy

A = ωα(µ),

ωα(µ) = {ϕα(µ, k)|k ≥ k′}, (28)

B = ωβ(µ′),

ωβ(µ′) = {ϕβ(µ′, k)|k ≥ k′′}, (29)

C = ωγ(µ′′),

ωγ(µ′′) = {ϕγ(µ′′, k)|k ≥ k′′′}. (30)

The hypothesis states that A ⊥ B and B ⊥ C are true:

∃δ ∈ Πn,∃ν ∈ ω
α(µ),Oδ(ν) ∧ ωβ(µ′) , ∅, (31)

∃ξ ∈ Πn,∃λ ∈ ω
β(µ′),Oξ(λ) ∧ ωα(µ) , ∅, (32)
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∃δ′ ∈ Πn,∃ν
′ ∈ ωβ(µ′),Oδ

′

(ν′) ∧ ωγ(µ′′) , ∅, (33)

∃ξ′ ∈ Πn,∃λ
′ ∈ ωγ(µ′′),Oξ

′

(λ′) ∧ ωβ(µ′) , ∅, (34)

and we must prove the satisfaction of A ⊥ C :

∃δ′′ ∈ Πn,∃ν
′′ ∈ ωα(µ),Oδ

′′

(ν′′) ∧ ωγ(µ′′) , ∅, (35)

∃ξ′′ ∈ Πn,∃λ
′′ ∈ ωγ(µ′′),Oξ

′′

(λ′′) ∧ ωα(µ) , ∅. (36)

We get the existence of k1 ∈ N and k3 > k2 ≥ k′′ such that

ϕδ(ν, k1)
(29),(31)
= ϕβ(µ′, k2), (37)

ϕβ(µ′, k3)
(29),(33)
= ν′, (38)

and we obtain also the existence of k4 ∈ N and k5 ≥ k′′′ satisfying

ϕδ
′

(ν′, k4)
(30),(33)
= ϕγ(µ′′, k5). (39)

At this moment we consider the computation function δ′′ ∈ Πn which is arbitrary and fulfills

δ′′k =


δk, i f k ∈ {0, ..., k1 − 1},

βk−k1+k2 , i f k ∈ {k1, ..., k1 − k2 + k3 − 1},
δ′k−k1+k2−k3 , i f k ∈ {k1 − k2 + k3,
..., k1 − k2 + k3 + k4 − 1}.

(40)

We prove the satisfaction of (35) for ν′′ = ν.We infer: ∀k ∈ {0, ..., k1 − 1},

ϕδ
′′

(ν, k)
(40)
= ϕδ(ν, k),

ϕδ
′′

(ν, k1) = ϕδ(ν, k1)
(37)
= ϕβ(µ′, k2), (41)

∀k ∈ {k1, ..., k1 − k2 + k3 − 1},

ϕδ
′′

(ν, k) = ϕσ
k1 (δ′′)(ϕδ

′′

(ν, k1), k − k1)
(40),(41)
= ϕσ

k2 (β)(ϕβ(µ′, k2), k − k1)

= ϕβ(µ′, k − k1 + k2),

ϕδ
′′

(ν, k1 − k2 + k3) = ϕβ(µ′, k3)
(38)
= ν′, (42)

∀k ∈ {k1 − k2 + k3, ..., k1 − k2 + k3 + k4 − 1},

ϕδ
′′

(ν, k) = ϕσ
k1−k2+k3 (δ′′)(ϕδ

′′

(ν, k1 − k2 + k3), k − k1 + k2 − k3)

(40),(42)
= ϕδ

′

(ν′, k − k1 + k2 − k3),

ϕδ
′′

(ν, k1 − k2 + k3 + k4) = ϕδ
′

(ν′, k4)
(39)
= ϕγ(µ′′, k5).

As k5 ≥ k′′′, we have obtained that Oδ
′′

(ν) ∧ ωγ(µ′′) , ∅. (35) is proved and (36) can be
proved similarly.

Theorem 4.2 The omega limit sets A ∈ ΩΦ, B ∈ ΩΦ are given. If A ⊥ B, then the omega
limit set C ∈ ΩΦ exists with the property that A ⊥ C, B ⊥ C and A ∨ B ⊂ C.
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Proof. We have the existence of α ∈ Πn, µ ∈ Bn, β ∈ Πn, µ
′ ∈ Bn such that

A = ωα(µ),

B = ωβ(µ′).

The hypothesis A ⊥ B states the existence of δ ∈ Πn, ν such that

ν ∈ ωα(µ), (43)

Oδ(ν) ∧ ωβ(µ′) , ∅, (44)

and of δ′ ∈ Πn, ν
′ with

ν′ ∈ ωβ(µ′), (45)

Oδ
′

(ν′) ∧ ωα(µ) , ∅. (46)

We want to show the existence of γ ∈ Πn with C = ωγ(µ) and ωα(µ) ∨ ωβ(µ′) ⊂ ωγ(µ).
We suppose that k′ ∈ N, k′′ ∈ N satisfy

ωα(µ) = {ϕα(µ, k)|k ≥ k′}, (47)

ωβ(µ′) = {ϕβ(µ′, k)|k ≥ k′′}. (48)

From (43), (47) k1 ≥ k′ exists with the property

ϕα(µ, k1) = ν, (49)

and from (44), (48) we have the existence of k2 ∈ N, k3 ≥ k′′ with

ϕδ(ν, k2) = ϕβ(µ′, k3). (50)

Statements (45), (48) imply the existence of k′4 ≥ k′′ such that

ϕβ(µ′, k′4) = ν′,

and we have also the existence of k′′4 ≥ k3 for which

ωβ(µ′) = {ϕβ(µ′, k)|k ∈ {k3, ..., k′′4 }}.

These allow us to choose from infinitely many possibilities some k4 ≥ max{k′4, k
′′
4 } with

ϕβ(µ′, k4) = ν′, (51)

ωβ(µ′) = {ϕβ(µ′, k)|k ∈ {k3, ..., k4}}. (52)

Statements (46), (47) give the existence of k5 ∈ N, k6 ≥ k′ with

ϕδ
′

(ν′, k5) = ϕα(µ, k6). (53)

(43), (47) imply that k′7 ≥ k′ exists making

ϕα(µ, k′7) = ν

true, from the progressiveness of α we get the existence of k′′7 > k6 with

αk6 ∪ ... ∪ αk′′7 −1 = (1, ..., 1),
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and we know also that k′′′7 ≥ k6 exists such that

ωα(µ) = {ϕα(µ, k)|k ∈ {k6, ..., k′′′7 }}.

We fix from infinitely many possibilities some k7 ≥ max{k′7, k
′′
7 , k

′′′
7 } that satisfies

ϕα(µ, k7) = ν (54)

αk6 ∪ ... ∪ αk7−1 = (1, ..., 1), (55)

ωα(µ) = {ϕα(µ, k)|k ∈ {k6, ..., k7}}. (56)

We define γ : N→ Bn by
∀k ∈ {0, ..., k1 − 1},

γk = αk,
(57)

∀k ∈ {k1, ..., k1 + k2 − 1},
γk = δk−k1 ,

(58)

∀k ∈ {k1 + k2, ..., k1 + k2 − k3 + k4 − 1},
γk = βk−k1−k2+k3 ,

(59)

∀k ∈ {k1 + k2 − k3 + k4, ..., k1 + k2 − k3 + k4 + k5 − 1},
γk = δ′k−k1−k2+k3−k4 ,

(60)

∀k ∈ {k1 + k2 − k3 + k4 + k5, ..., k1 + k2 − k3 + k4 + k5 − k6 + k7 − 1},
γk = αk−k1−k2+k3−k4−k5+k6 ,

(61)

...

and at this moment the sequence (58),...,(61) repeats with the period

T = k2 − k3 + k4 + k5 − k6 + k7. (62)

The fact that γ ∈ Πn follows from its eventual periodicity ∀k ≥ k1,

γk = γk+T (63)

and from
γk1 ∪ ... ∪ γk1+T−1 (61),(62)

≥ αk6 ∪ ... ∪ αk7−1 (55)
= (1, ..., 1).

We infer ∀k ∈ {0, ..., k1 − 1},

ϕγ(µ, k)
(57)
= ϕα(µ, k),

ϕγ(µ, k1) = ϕα(µ, k1)
(49)
= ν, (64)

∀k ∈ {k1, ..., k1 + k2 − 1},

ϕγ(µ, k) = ϕσ
k1 (γ)(ϕγ(µ , k1), k − k1)

(58),(64)
= ϕδ(ν, k − k1),

ϕγ(µ, k1 + k2) = ϕδ(ν, k2)
(50)
= ϕβ(µ′, k3), (65)

∀k ∈ {k1 + k2, ..., k1 + k2 − k3 + k4 − 1},

ϕγ(µ, k) = ϕσ
k1+k2 (γ)(ϕγ(µ , k1 + k2), k − k1 − k2) (66)

(59),(65)
= ϕσ

k3 (β)(ϕβ(µ′, k3), k − k1 − k2) = ϕβ(µ′, k − k1 − k2 + k3),
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ϕγ(µ, k1 + k2 − k3 + k4) = ϕβ(µ′, k4)
(51)
= ν′, (67)

∀k ∈ {k1 + k2 − k3 + k4, ..., k1 + k2 − k3 + k4 + k5 − 1},

ϕγ(µ, k) = ϕσ
k1+k2−k3+k4 (γ)(ϕγ(µ , k1 + k2 − k3 + k4), k − k1 − k2 + k3 − k4)

(60),(67)
= ϕδ

′

(ν′, k − k1 − k2 + k3 − k4),

ϕγ(µ, k1 + k2 − k3 + k4 + k5) = ϕδ
′

(ν′, k5)
(53)
= ϕα(µ, k6), (68)

∀k ∈ {k1 + k2 − k3 + k4 + k5, ..., k1 + k2 − k3 + k4 + k5 − k6 + k7 − 1},

ϕγ(µ, k) (69)

= ϕσ
k1+k2−k3+k4+k5 (γ)(ϕγ(µ , k1 + k2 − k3 + k4 + k5), k − k1 − k2 + k3 − k4 − k5)

(61),(68)
= ϕσ

k6 (α)(ϕα(µ, k6), k − k1 − k2 + k3 − k4 − k5)

= ϕα(µ, k − k1 − k2 + k3 − k4 − k5 + k6),

ϕγ(µ, k1 + k2 − k3 + k4 + k5 − k6 + k7) = ϕα(µ, k7)
(54)
= ν. (70)

We can see that

ϕγ(µ, k1 + (k2 − k3 + k4 + k5 − k6 + k7))
(62)
= ϕγ(µ, k1 + T )

(70)
= ν

(64)
= ϕγ(µ, k1),

and the eventual periodicity of ϕγ(µ, ·) follows, since we can prove by induction on k ≥ k1,
taking into account (63), that

ϕγ(µ, k) = ϕγ(µ, k + T ).

We have:

ωβ(µ′)
(52)
= {ϕβ(µ′, k)|k ∈ {k3, ..., k4}}

(65),(66),(67)
= {ϕγ(µ, k)|k ∈ {k1 + k2, ..., k1 + k2 − k3 + k4}}

⊂ {ϕγ(µ, k)|k ∈ {k1, ..., k1 + T }} = ωγ(µ),

ωα(µ)
(56)
= {ϕα(µ, k)|k ∈ {k6, ..., k7}}

(68),(69),(70)
= {ϕγ(µ, k)|k ∈ {k1 + k2 − k3 + k4 + k5, ..., k1 + k2 − k3 + k4 + k5 − k6 + k7}}

⊂ {ϕγ(µ, k)|k ∈ {k1, ..., k1 + T }} = ωγ(µ),

thus the set C = ωγ(µ) satisfies A ∨ B ⊂ C. Remark 4.1 shows that ωα(µ) ⊥ ωγ(µ) and
ωβ(µ′) ⊥ ωγ(µ) hold.
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5 Maximal Omega Limit Sets
Theorem 5.1 Let M ∈ ΩΦ an omega limit set. The following statements are equivalent

∀A ∈ ΩΦ, A ∧ M , ∅ =⇒ A ⊂ M, (71)

∀A ∈ ΩΦ, A ⊥ M =⇒ A ⊂ M. (72)

Proof. We take A ∈ ΩΦ arbitrary.
(71)=⇒(72) The computation functions α ∈ Πn, β ∈ Πn, the points µ ∈ Bn, µ′ ∈ Bn and

k′ ∈ N, k′′ ∈ N exist satisfying
A = ωα(µ),

ωα(µ) = {ϕα(µ, k)|k ≥ k′},

M = ωβ(µ′),

ωβ(µ′) = {ϕβ(µ′, k)|k ≥ k′′}.

The hypothesis A ⊥ M means the existence of ν ∈ A : ∃k1 ≥ k′,

ν = ϕα(µ, k1), (73)

and of δ ∈ Πn such that Oδ(ν) ∧ M , ∅ : ∃k2 ∈ N,∃k3 ≥ k′′,

ϕδ(ν, k2) = ϕβ(µ′, k3), (74)

and also the existence of ν′ ∈ M, that we can choose without losing the generality to be
reached subsequently to ϕβ(µ′, k3) : ∃k4 > k3,

ν′ = ϕβ(µ′, k4), (75)

and the existence of δ′ ∈ Πn such that Oδ
′

(ν′) ∧ A , ∅ : ∃k5 ∈ N,∃k6 ≥ k′,

ϕδ
′

(ν′, k5) = ϕα(µ, k6). (76)

We know that ν ∈ A is reached again, subsequently to ϕα(µ, k6) : ∃k′7 > k6,

ν = ϕα(µ, k′7),

that the progressiveness of α indicates the existence of k′′7 > k6 with

αk6 ∪ ... ∪ αk′′7 −1 = (1, ..., 1),

and also that k′′′7 > k6 exists making

A = {ϕα(µ, k)|k ∈ {k6, ..., k′′′7 − 1}}

true. We fix from infinitely many possibilities some k7 ≥ max{k′7, k
′′
7 , k

′′′
7 } that satisfies

ν = ϕα(µ, k7), (77)

αk6 ∪ ... ∪ αk7−1 = (1, ..., 1), (78)

A = {ϕα(µ, k)|k ∈ {k6, ..., k7 − 1}}. (79)

We define γ : N→ Bn in the following way:

∀k ∈ {0, ..., k1 − 1}, γk = αk, (80)
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∀k ∈ {k1, ..., k1 + k2 − 1}, γk = δk−k1 , (81)

∀k ∈ {k1 + k2, ..., k1 + k2 − k3 + k4 − 1}, γk = βk−k1−k2+k3 , (82)

∀k ∈ {k1 + k2 − k3 + k4, ..., k1 + k2 − k3 + k4 + k5 − 1},
γk = δ′k−k1−k2+k3−k4 ,

(83)

∀k ∈ {k1 + k2 − k3 + k4 + k5, ...,
k1 + k2 − k3 + k4 + k5 − k6 + k7 − 1},

γk = αk−k1−k2+k3−k4−k5+k6 ,
(84)

and at this moment the definition of γ is made by repeating (81),...,(84) periodically, with
the period

T = k2 − k3 + k4 + k5 − k6 + k7 : (85)

∀k ≥ k1,
γk = γk+T . (86)

We infer that γ ∈ Πn because

γk1 ∪ ... ∪ γk1+T−1 (84),(85)
≥ αk6 ∪ ... ∪ αk7−1 (78)

= (1, ..., 1).

We have: ∀k ∈ {0, ..., k1 − 1},

ϕγ(µ, k)
(80)
= ϕα(µ, k),

ϕγ(µ, k1) = ϕα(µ, k1)
(73)
= ν, (87)

∀k ∈ {k1, ..., k1 + k2 − 1},

ϕγ(µ, k) = ϕσ
k1 (γ)(ϕγ(µ, k1), k − k1)

(81),(87)
= ϕδ(ν, k − k1),

ϕγ(µ, k1 + k2) = ϕδ(ν, k2)
(74)
= ϕβ(µ′, k3), (88)

∀k ∈ {k1 + k2, ..., k1 + k2 − k3 + k4 − 1},

ϕγ(µ, k) = ϕσ
k1+k2 (γ)(ϕγ(µ, k1 + k2), k − k1 − k2)

(82),(88)
= ϕσ

k3 (β)(ϕβ(µ′, k3), k − k1 − k2) = ϕβ(µ′, k − k1 − k2 + k3),

ϕγ(µ, k1 + k2 − k3 + k4) = ϕβ(µ′, k4)
(75)
= ν′, (89)

∀k ∈ {k1 + k2 − k3 + k4, ..., k1 + k2 − k3 + k4 + k5 − 1},

ϕγ(µ, k) = ϕσ
k1+k2−k3+k4 (γ)(ϕγ(µ, k1 + k2 − k3 + k4), k − k1 − k2 + k3 − k4)

(83),(89)
= ϕδ

′

(ν′, k − k1 − k2 + k3 − k4),

ϕγ(µ, k1 + k2 − k3 + k4 + k5) = ϕδ
′

(ν′, k5)
(76)
= ϕα(µ, k6), (90)

∀k ∈ {k1 + k2 − k3 + k4 + k5, ..., k1 + k2 − k3 + k4 + k5 − k6 + k7 − 1},

ϕγ(µ, k)

= ϕσ
k1+k2−k3+k4+k5 (γ)(ϕγ(µ, k1 + k2 − k3 + k4 + k5), k − k1 − k2 + k3 − k4 − k5)

(84),(90)
= ϕσ

k6 (α)(ϕα(µ, k6), k − k1 − k2 + k3 − k4 − k5)

= ϕα(µ, k − k1 − k2 + k3 − k4 − k5 + k6),
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ϕγ(µ, k1 + k2 − k3 + k4 + k5 − k6 + k7) = ϕα(µ, k7)
(77)
= ν. (91)

We note that

ϕγ(µ, k1 + (k2 − k3 + k4 + k5 − k6 + k7))
(85)
= ϕγ(µ, k1 + T )

(91)
= ν

(87)
= ϕγ(µ, k1)

and we can prove by induction on k ≥ k1, by taking into account (86), that

ϕγ(µ, k) = ϕγ(µ, k + T ).

We have constructed an omega limit set

C = ωγ(µ),

ωγ(µ) = {ϕγ(µ, k)|k ≥ k1}

that satisfies C ∧ M , ∅, from

ωγ(µ) ∋ ϕγ(µ, k1 + k2)
(88)
= ϕδ(ν, k2)

(74)
= ϕβ(µ′, k3) ∈ ωβ(µ′)

for example. The hypothesis (71) implies C ⊂ M. But A ⊂ C, since

A
(79)
= {ϕα(µ, k)|k ∈ {k6, ..., k7 − 1}}

= {ϕα(µ, k − k1 − k2 + k3 − k4 − k5 + k6)|k ∈ {k1 + k2 − k3 + k4 + k5,

..., k1 + k2 − k3 + k4 + k5 − k6 + k7 − 1}}

= {ϕγ(µ, k)|k ∈ {k1 + k2 − k3 + k4 + k5, ..., k1 + k2 − k3 + k4 + k5 − k6 + k7 − 1}}

⊂ {ϕγ(µ, k)|k ∈ {k1, ..., k1 + k2 − k3 + k4 + k5 − k6 + k7 − 1}}

= {ϕγ(µ, k)|k ∈ {k1, ..., k1 + T − 1}} = ωγ(µ) = C,

thus A ⊂ M.
(72)=⇒(71) The hypothesis states that A ∧ M , ∅ and in this case A ⊥ M holds. The

implication (72) shows that A ⊂ M.

Definition 5.1 If one of (71), (72) is true, the set M ∈ ΩΦ is called maximal.

Notation 5.1 The set of the maximal omega limit sets of Φ is denoted by ΩΦ :

ΩΦ = {M|M ∈ ΩΦ,∀A ∈ ΩΦ, A ⊥ M =⇒ A ⊂ M}.

Example 5.1 In the case of the system

(0, 1) �
- (0, 0) -

� (1, 0)

(1, 1)
?

the sets A = {(0, 0), (0, 1)}, B = {(0, 0), (1, 0)} are omega limit, not maximal, equivalent, and
the sets M1 = {(0, 1), (0, 0), (1, 0)}, M2 = {(1, 1)} are omega limit maximal.

Theorem 5.2 The maximal omega limit sets are disjoint two by two.
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Proof. In case that M ∈ ΩΦ and M′ ∈ ΩΦ arbitrary fulfill M ∧ M′ , ∅, the inclusions
M ⊂ M′, M′ ⊂ M are both true, therefore M = M′.

Theorem 5.3 ∀A ∈ ΩΦ,∀M ∈ ΩΦ the statements

A ∧ M , ∅, (92)

A ⊥ M, (93)

A ⊂ M (94)

are equivalent.

Proof. Indeed, for any A ∈ ΩΦ and M ∈ ΩΦ, the implications (92)=⇒ (93)=⇒(94)=⇒(92)
are obvious.

Theorem 5.4 If M ∈ ΩΦ is a maximal omega limit set and ∃µ ∈ M,∃α ∈ Πn,Oα(µ)∖M , ∅,
then ωα(µ) ∧ M = ∅.

Proof. The maximal omega limit set M fulfills that µ ∈ M and α ∈ Πn exist such that
Oα(µ) ∖ M , ∅. If, against all reason, ωα(µ) ∧ M , ∅, then we infer, by applying Theorem
3.4, that M ∨ Oα(µ) is omega limit and M ⊊ M ∨ Oα(µ). The last assertion represents a
contradiction with the maximality of M. ωα(µ) ∧ M = ∅ follows.

6 Omega limit sets vs maximal omega limit sets
Theorem 6.1 (a) For any A ∈ ΩΦ, at least one M ∈ ΩΦ exists with A ∧ M , ∅.

(b) For any A ∈ ΩΦ, at most one M ∈ ΩΦ exists such that A ∧ M , ∅.

Proof. We fix an arbitrary A ∈ ΩΦ.
(a) If A is maximal, then item (a) is proved, thus we can suppose that A < ΩΦ. In case

that ∀B ∈ ΩΦ ∖ {C|C ∈ ΩΦ,C ⊂ A}, A and B are not equivalent, we get that A is maximal,
contradiction, therefore some B ∈ ΩΦ ∖ {C|C ∈ ΩΦ,C ⊂ A} exists with A ⊥ B. Theorem 4.2
shows the existence of A′ ∈ ΩΦ that fulfills A ⊥ A′, B ⊥ A′ and A ⊊ A ∨ B ⊂ A′.

If A′ is maximal, then item (a) is proved, as far as A ∧ A′ , ∅, thus we can suppose that
A′ < ΩΦ. If ∀B′ ∈ ΩΦ ∖ {C|C ∈ ΩΦ,C ⊂ A′}, A′ ⊥ B′ is false, then A′ ∈ ΩΦ, contradiction,
thus B′ ∈ ΩΦ ∖ {C|C ∈ ΩΦ,C ⊂ A′} exists with A′ ⊥ B′. We infer from Theorem 4.2 the
existence of A′′ ∈ ΩΦ that fulfills A′ ⊥ A′′, B′ ⊥ A′′ and A′ ⊊ A′ ∨ B′ ⊂ A′′.

If A′′ is maximal, then (a) is proved because A∧ A′′ , ∅, thus we can suppose that A′′ is
not maximal...

In finitely many steps we obtain the existence of A′′′ ∈ ΩΦ that satisfies A ⊊ A′ ⊊ A′′ ⊊
... ⊊ A′′′ and, since in this case A ∧ A′′′ , ∅, (a) is proved.

(b) Let the arbitrary sets M ∈ ΩΦ,M′ ∈ ΩΦ that fulfill A ∧ M , ∅, A ∧ M′ , ∅. From
the definition (71) of the maximal omega limit sets we infer that A ⊂ M, A ⊂ M′ are true, in
other words M ∧M′ , ∅ holds. But in this situation M ⊂ M′ and M′ ⊂ M are both true, i.e.
M = M′.

Corollary 6.1 For any omega limit set A ∈ ΩΦ, exactly one M ∈ ΩΦ exists such that the
statements

A ∧ M , ∅,

A ⊥ M,

A ⊂ M

are true.

Proof. Theorem 6.1 shows that for any A ∈ ΩΦ, exactly one M ∈ ΩΦ exists with A∧M , ∅.
We use Theorem 5.3.
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7 The set of the omega limit sets of a point
Definition 7.1 We denote for any µ ∈ Bn :

ω+(µ) =
∨
α∈Πn

ωα(µ).

ω+(µ) is called the set of the omega limit sets of (the point) µ.

Theorem 7.1 Let Φ : Bn → Bn and µ ∈ Bn. If γ ∈ Πn and µ′ ∈ Bn exist such that ω+(µ) =
ωγ(µ′), then ω+(µ) is invariant.

Proof. Let λ ∈ Bn and ν ∈ ω+(µ) arbitrary, thus α ∈ Πn exists with ν ∈ ωα(µ). For

ωα(µ) = {ϕα(µ, k)|k ≥ k′},

where k′ ∈ N is suitably chosen, we note the existence of k1 > k′ having the property that

ϕα(µ, k1) = ν. (95)

We consider now β ∈ Πn arbitrary, satisfying

∀k ∈ {0, ..., k1 − 1}, βk = αk,

βk1 = λ,

i.e. ν,Φλ(ν) ∈ Oβ(µ), and in addition

ϕβ(µ, k1) = ϕα(µ, k1) = ν. (96)

For
ωβ(µ) = {ϕβ(µ, k)|k ≥ k′′},

k′′ ∈ N, the time instant k2 > max{k1, k′′} exists with ϕβ(µ, k2) ∈ ωβ(µ).
At this moment we take profit of the fact that ωα(µ), ωβ(µ) ⊂ ω+(µ) = ωγ(µ′) is true,

from the hypothesis, where

ωγ(µ′) = {ϕγ(µ′, k)|k ≥ k′′′},

for some k′′′ ∈ N. This means the existence of k3 ≥ k′′′, k′4 ≥ k′′′, k′′4 > k3 such that

ϕβ(µ, k2) = ϕγ(µ′, k3), (97)

ϕγ(µ′, k′4) = ν,

γk3 ∪ ... ∪ γk′′4 −1 = (1, ..., 1)

and we choose from infinitely many possibilities a k4 ≥ max{k′4, k
′′
4 } making

ϕγ(µ′, k4) = ν, (98)

γk3 ∪ ... ∪ γk4−1 = (1, ..., 1) (99)

true. We define the computation function δ : N→ Bn in the following manner:

∀k ∈ {0, ..., k1 − 1}, δk = αk, (100)

∀k ∈ {k1, ..., k2 − 1}, δk = βk, (101)
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∀k ∈ {k2, ..., k2 − k3 + k4 − 1}, δk = γk−k2+k3 , (102)

and ∀k ≥ k1,

δk = δk+T , (103)

where
T = −k1 + k2 − k3 + k4. (104)

The fact that δ ∈ Πn results from

δk1 ∪ ... ∪ δk2−k3+k4−1 ≥ δk2 ∪ ... ∪ δk2−k3+k4−1 (102)
= γk3 ∪ ... ∪ γk4−1 (99)

= (1, ..., 1).

The values of the state function ϕδ(µ, ·) are the following: ∀k ∈ {0, ..., k1 − 1},

ϕδ(µ, k)
(100)
= ϕα(µ, k),

ϕδ(µ, k1) = ϕα(µ, k1)
(95)
= ν, (105)

∀k ∈ {k1, ..., k2 − 1},

ϕδ(µ, k) = ϕσ
k1 (δ)(ϕδ(µ, k1), k − k1)

(101),(105),(96)
= ϕσ

k1 (β)(ϕβ(µ, k1), k − k1)

= ϕβ(µ, k),

ϕδ(µ, k2) = ϕβ(µ, k2)
(97)
= ϕγ(µ′, k3), (106)

∀k ∈ {k2, ..., k2 − k3 + k4 − 1},

ϕδ(µ, k) = ϕσ
k2 (δ)(ϕδ(µ, k2), k − k2)

(102),(106)
= ϕσ

k3 (γ)(ϕγ(µ′, k3), k − k2)

= ϕγ(µ′, k − k2 + k3),

ϕδ(µ, k2 − k3 + k4) = ϕγ(µ′, k4)
(98)
= ν. (107)

We see that
ϕδ(µ, k1)

(105)
= ν

(107)
= ϕδ(µ, k2 − k3 + k4)

= ϕδ(µ, k1 + (−k1 + k2 − k3 + k4))
(104)
= ϕδ(µ, k1 + T )

and we can prove by induction on k ≥ k1, by using (103), that

ϕδ(µ, k) = ϕδ(µ, k + T ).

The conclusion is ∀p ∈ N,
ν = ϕδ(µ, k1 + pT ),

Φλ(ν) = ϕδ(µ, k1 + 1 + pT ),

i.e.
ν,Φλ(ν) ∈ {ϕδ(µ, k)|k ≥ k1} = ω

δ(µ) ⊂ ω+(µ),

therefore the invariance of ω+(µ) follows.

Theorem 7.2 LetΩΦ = {M1, ...,Mp} be the set of the maximal omega limit sets of the system
Φ. Then ∀µ ∈ Bn, the indexes i1, i2, ..., iq ∈ {1, ..., p} exist such that

ω+(µ) = Mi1 ∨ Mi2 ∨ ... ∨ Miq .
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Proof. We fix an arbitrary µ ∈ Bn.
For any α ∈ Πn, exactly one i ∈ {1, ..., p} exists with

ωα(µ) ⊂ Mi,

from Corollary 6.1. This gives the possibility of defining the set {i1, ..., iq} in the following
way:

{i1, ..., iq} = {i|i ∈ {1, ..., p},∃α ∈ Πn, ω
α(µ) ⊂ Mi}. (108)

We fix now i ∈ {i1, ..., iq}, arbitrary. Mi is terminal

∃γ ∈ Πn,∃µ
′ ∈ Bn,Mi = ω

γ(µ′),

and α ∈ Πn exists, from (108), such that ωα(µ) ⊂ Mi.We suppose that

ωα(µ) = {ϕα(µ, k)|k ≥ k′},

ωγ(µ′) = {ϕγ(µ′, k)|k ≥ k′′},

with k′ ∈ N, k′′ ∈ N suitably chosen, and we have the existence of k1 ≥ k′, k2 ≥ k′′ with

ϕα(µ, k1) = ϕγ(µ′, k2). (109)

We define β ∈ Πn like this:

βk =

{
αk, i f k ∈ {0, ..., k1 − 1},
γk−k1+k2 , i f k ≥ k1

(110)

and we deduce in succession ∀k ∈ {0, ..., k1 − 1},

ϕβ(µ, k)
(110)
= ϕα(µ, k),

ϕβ(µ, k1) = ϕα(µ, k1)
(109)
= ϕγ(µ′, k2), (111)

∀k ≥ k1,
ϕβ(µ, k) = ϕσ

k1 (β)(ϕβ(µ, k1), k − k1)
(110),(111)
= ϕσ

k2 (γ)(ϕγ(µ′, k2), k − k1) = ϕγ(µ′, k − k1 + k2).
(112)

We have obtained the existence of β, namely the one defined by (110), satisfying

Mi = ω
γ(µ′)

Theorem 3.3,(112)
= ωβ(µ).

Let us denote with Πi1
n , ...,Π

iq
n the partition of Πn defined by ∀ j ∈ {i1, ..., iq},

Π
j
n = {δ|δ ∈ Πn, ω

δ(µ) ⊂ M j},

therefore
∀δ ∈ Π

j
n, ω

δ(µ) ⊂ M j. (113)

The conclusion is that β′ ∈ Πi1
n , ..., β

′′ ∈ Π
iq
n exist such that Mi1 = ω

β′ (µ), ...,Miq = ω
β′′ (µ)

and
Mi1 ∨ ... ∨ Miq = ω

β′ (µ) ∨ ... ∨ ωβ
′′

(µ) ⊂ ω+(µ) =
∨

δ∈Π
i1
n ∨...∨Π

iq
n

ωδ(µ)

=
∨
δ∈Π

i1
n

ωδ(µ) ∨ ... ∨
∨
δ∈Π

iq
n

ωδ(µ)
(113)
⊂ Mi1 ∨ ... ∨ Miq .
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8 Final sets
Definition 8.1 If the omega limit set A ∈ ΩΦ is invariant, then it is said to be final, otherwise
A is said to be pseudo-final.

Notation 8.1 We denote with 𭟋Φ the set of the final sets of Φ :

𭟋Φ = {A|A ∈ ΩΦ and ∀λ ∈ Bn,Φλ(A) ⊂ A}.

Example 8.1 The system

(1, 1, 1) � (0, 1, 0) - (1, 1, 0)

(0, 0, 0) - (0, 0, 1)

6

- (0, 1, 1)
?

6

(1, 0, 0)
?

6

(1, 0, 1)
?

6

has four maximal omega limit sets: M1 = {(0, 0, 1), (1, 0, 1)}, M2 = {(1, 1, 1)}, M3 =

{(0, 1, 1), (0, 1, 0)}, M4 = {(1, 1, 0), (1, 0, 0)} two of which, M2 and M4, are final. Note the
way that, starting from the initial value µ = (0, 0, 0), a state ϕα(µ, ·) meets 0, 1 or 2 pseudo-
final sets and at most a final set.

9 The existence of the final sets
Theorem 9.1 Let ΩΦ = {M1, ...,Mp} the set of the maximal omega limit sets of Φ. Then at
least one of them is final.

Proof. If M1 is final, the theorem is proved, thus we suppose that it is not, and α ∈ Πn, µ ∈ M1
exist with the property that Oα(µ)∖M1 , ∅. At this moment Theorem 5.4 states that ωα(µ)∧
M1 = ∅.We suppose without losing the generality, from Corollary 6.1, that ωα(µ) ⊂ M2.

If M2 is final, the conclusion of the theorem follows, therefore we can suppose that M2 is
not invariant. In this situation α′ ∈ Πn, µ

′ ∈ M2 exist, having the property Oα
′

(µ′) ∖ M2 , ∅
thus, from Theorem 5.4, ωα

′

(µ′) ∧ M2 = ∅. The inclusion ωα
′

(µ′) ⊂ M1, which might be
a consequence of Corollary 6.1, produces the situation M1 ⊥ M2 which is in contradiction
with the maximality of M1,M2.We conclude that the only possibility is, without losing the
generality, ωα

′

(µ′) ⊂ M3.
...
If Mp is final, the theorem is proved, thus we suppose that this is not the case. Then

α′′ ∈ Πn, µ
′′ ∈ Mp exist with Oα

′′

(µ′′) ∖ Mp , ∅, i.e. ωα
′′

(µ′′) ∧ Mp = ∅. We have
been brought to the conclusion, due to Corollary 6.1, that ωα

′′

(µ′′) is included in one of
M1, ...,Mp−1 representing, via the equivalence ⊥, a contradiction with the maximality of
these sets.

We have obtained that at least one of M1, ...,Mp is final.

10 The final sets are maximal
Theorem 10.1 If the set A is final, then it is maximal (as omega limit set): 𭟋Φ ⊂ ΩΦ.

Proof. As A is terminal, α ∈ Πn and µ ∈ Bn exist with A = ωα(µ).We consider an arbitrary
terminal set B ⊂ Bn, for which the truth of

B ⊥ A =⇒ B ⊂ A
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must be proved. In this respect let β ∈ Πn, µ
′ ∈ Bn arbitrary, with B = ωβ(µ′).We have

ωα(µ) = {ϕα(µ, k)|k ≥ k′},

ωβ(µ′) = {ϕβ(µ′, k)|k ≥ k′′}, (114)

with k′ ∈ N, k′′ ∈ N suitably chosen. The hypothesis states

∃δ ∈ Πn,∃ν ∈ ω
β(µ′),Oδ(ν) ∧ ωα(µ) , ∅,

∃δ′ ∈ Πn,∃ν
′ ∈ ωα(µ),Oδ

′

(ν′) ∧ ωβ(µ′) , ∅, (115)

and we suppose against all reason that B ⊂ A is false: ωβ(µ′) ∖ ωα(µ) , ∅, i.e. ν′′ ∈
ωβ(µ′) ∖ ωα(µ) exists.

From (114), (115) we get the existence of ν′ ∈ ωα(µ), k1 ∈ N and k3 > k2 ≥ k′′ such that

ϕδ
′

(ν′, k1) = ϕβ(µ′, k2), (116)

ϕβ(µ′, k3) = ν′′. (117)

We take an arbitrary γ ∈ Πn now, that satisfies

γk =

{
δ′k, i f k ∈ {0, ..., k1 − 1},

βk−k1+k2 , i f k ∈ {k1, ..., k1 − k2 + k3 − 1}. (118)

We infer: ∀k ∈ {0, ..., k1 − 1},
ϕγ(ν′, k)

(118)
= ϕδ

′

(ν′, k),

ϕγ(ν′, k1) = ϕδ
′

(ν′, k1)
(116)
= ϕβ(µ′, k2), (119)

∀k ∈ {k1, ..., k1 − k2 + k3 − 1},

ϕγ(ν′, k) = ϕσ
k1 (γ)(ϕγ(µ′, k1), k − k1)

(118),(119)
= ϕσ

k2 (β)(ϕβ(µ′, k2), k − k1)

= ϕβ(µ′, k − k1 + k2),

ϕγ(ν′, k1 − k2 + k3) = ϕβ(µ′, k3)
(117)
= ν′′.

The last equation is a contradiction with the invariance of A, in the sense that k ∈ {0, ..., k1 −

k2+k3−1} exists such that ϕγ(ν′, k) ∈ A, ϕγ(ν′, k+1) = Φγ
k
(ϕγ(ν′, k)) < A.We have obtained

that ωβ(µ′) ∖ ωα(µ) = ∅, thus B ⊂ A holds.

11 The set of the omega limit sets of a point revisited
Theorem 11.1 Let Φ : Bn → Bn, ΩΦ = {M1, ...,Mp}, and µ ∈ Bn. In the equation

ω+(µ) = Mi1 ∨ Mi2 ∨ ... ∨ Miq

which is known to be true from Theorem 7.2, where i1, i2, ..., iq ∈ {1, ..., p}, at least one of
Mi1 ,Mi2 , ..., Miq is final.

Proof. We fix α ∈ Πn arbitrary and we suppose, without losing the generality, that

ωα(µ) ⊂ Mi1 . (120)

We have the existence of l′ ∈ N with

ωα(µ) = {ϕα(µ, k)|k ≥ l′}.
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If ∀α′ ∈ Πn,∀µ
′ ∈ Mi1 ,O

α′ (µ′) ⊂ Mi1 , then Mi1 is final and the theorem is proved, thus we
can suppose that this is false and α′ ∈ Πn, µ

′ ∈ Mi1 exist with Oα
′

(µ′) ∖ Mi1 , ∅. In this
situation Theorem 5.4 states that ωα

′

(µ′) ∧ Mi1 = ∅. The request that Mi1 is omega limit set
means the existence of β′ ∈ Πn, ν

′ ∈ Bn and k′ ∈ N with

Mi1 = ω
β′ (ν′),

ωβ
′

(ν′) = {ϕβ
′

(ν′, k)|k ≥ k′}.

Then l1 ≥ l′ and k2 > k1 ≥ k′ exist such that

ϕα(µ, l1)
(120)
= ϕβ

′

(ν′, k1), (121)

ϕβ
′

(ν′, k2)
(120)
= µ′, (122)

and we define

γk =


αk, i f k ∈ {0, ..., l1 − 1},

β′k−l1+k1 , i f k ∈ {l1, ..., l1 − k1 + k2 − 1},
α′k−l1+k1−k2 , i f k ≥ l1 − k1 + k2

(123)

for which we obtain ∀k ∈ {0, ..., l1 − 1},

ϕγ(µ, k)
(123)
= ϕα(µ, k), (124)

ϕγ(µ, l1) = ϕα(µ, l1)
(121)
= ϕβ

′

(ν′, k1), (125)

∀k ∈ {l1, ..., l1 − k1 + k2 − 1},

ϕγ(µ, k) = ϕσ
l1 (γ)(ϕγ(µ, l1), k − l1) (126)

(123),(125)
= ϕσ

k1 (β′)(ϕβ
′

(ν′, k1), k − l1) = ϕβ
′

(ν′, k − l1 + k1),

ϕγ(µ, l1 − k1 + k2) = ϕβ
′

(ν′, k2)
(122)
= µ′, (127)

∀k ≥ l1 − k1 + k2,

ϕγ(µ, k) = ϕσ
l1−k1+k2 (γ)(ϕγ(µ, l1 − k1 + k2), k − l1 + k1 − k2)

(123),(127)
= ϕα

′

(µ′, k − l1 + k1 − k2).
(128)

We infer
ωγ(µ)

Theorem 3.3,(128)
= ωα

′

(µ′).

We suppose now without losing the generality that

ωα
′

(µ′) ⊂ Mi2 . (129)

Then l′′ ∈ N exists with
ωα

′

(µ′) = {ϕα
′

(µ′, k)|k ≥ l′′}.

If ∀α′′ ∈ Πn,∀µ
′′ ∈ Mi2 ,O

α′′ (µ′′) ⊂ Mi2 , then Mi2 is final and the theorem is proved, thus we
can suppose that α′′ ∈ Πn, µ

′′ ∈ Mi2 exist with Oα
′′

(µ′′) ∖ Mi2 , ∅ therefore, from Theorem
5.4, ωα

′′

(µ′′) ∧ Mi2 = ∅. The fact that Mi2 is terminal asks the existence of β′′ ∈ Πn, ν
′′ ∈ Bn

and k′′ ∈ N with
Mi2 = ω

β′′ (ν′′),

ωβ
′′

(ν′′) = {ϕβ
′′

(ν′′, k)|k ≥ k′′}.
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We have the existence of l′1 ≥ l′′ and k′2 > k′1 ≥ k′′ satisfying

ϕα
′

(µ′, l′1)
(129)
= ϕβ

′′

(ν′′, k′1), (130)

ϕβ
′′

(ν′′, k′2) = µ′′ (131)

and we define γ′ in the following manner:

γ′k =


γk, i f k ∈ {0, ..., l1 + l′1 − k1 + k2 − 1},

β′′k−l1−l′1+k1+k′1−k2 , i f k ∈ {l1 + l′1 − k1 + k2, ...,
l1 + l′1 − k1 − k′1 + k2 + k′2 − 1},

α′′k−l1−l′1+k1+k′1−k2−k′2 ,
i f k ≥ l1 + l′1 − k1 − k′1 + k2 + k′2.

(132)

We get ∀k ∈ {0, ..., l1 + l′1 − k1 + k2 − 1},

ϕγ
′

(µ, k)
(132)
= ϕγ(µ, k),

ϕγ
′

(µ, l1 + l′1 − k1 + k2) = ϕγ(µ, l1 + l′1 − k1 + k2) (133)
(128)
= ϕα

′

(µ′, l′1)
(130)
= ϕβ

′′

(ν′′, k′1),

∀k ∈ {l1 + l′1 − k1 + k2, ..., l1 + l′1 − k1 − k′1 + k2 + k′2 − 1},

ϕγ
′

(µ, k) = ϕσ
l1+l′1−k1+k2 (γ′)(ϕγ

′

(µ, l1 + l′1 − k1 + k2), k − l1 − l′1 + k1 − k2)

(132),(133)
= ϕσ

k′1 (β′′)(ϕβ
′′

(ν′′, k′1), k − l1 − l′1 + k1 − k2)

= ϕβ
′′

(ν′′, k − l1 − l′1 + k1 + k′1 − k2),

ϕγ
′

(µ, l1 + l′1 − k1 − k′1 + k2 + k′2) = ϕβ
′′

(ν′′, k′2)
(131)
= µ′′, (134)

∀k ≥ l1 + l′1 − k1 − k′1 + k2 + k′2,
ϕγ
′

(µ, k)

= ϕσ
l1+l′1−k1−k′1+k2+k′2 (γ′)(ϕγ

′

(µ, l1 + l′1 − k1 − k′1 + k2 + k′2), k − l1 − l′1 + k1 + k′1 − k2 − k′2)
(132),(134)
= ϕα

′′

(µ′′, k − l1 − l′1 + k1 + k′1 − k2 − k′2),

and the last statement implies that

ωγ
′

(µ) Theorem 3.3
= ωα

′′

(µ′′).

Ifωα
′′

(µ′′) ⊂ Mi1 , then we have Mi1 ⊥ Mi2 and this is a contradiction with the supposition
that Mi1 ,Mi2 are maximal and distinct. We can suppose without losing the generality that

ωα
′′

(µ′′) ⊂ Mi3 .

...
The reasoning makes the supposition that Mi1 , ...,Miq−1 are terminal nonfinal (pseudo-

final) and that
ωα

′′′

(µ′′′) ⊂ Miq .

If ∀α′′′′ ∈ Πn,∀µ
′′′′ ∈ Miq ,O

α′′′′ (µ′′′′) ⊂ Miq , then Miq is final and the theorem is proved,
otherwise α′′′′ ∈ Πn, µ

′′′′ ∈ Miq exist such that Oα
′′′′

(µ′′′′)∖Miq , ∅, thus ωα
′′′′

(µ′′′′)∧Miq =

∅. If ωα
′′′′

(µ′′′′) ⊂ Mi1 , we get the contradiction Mi1 ⊥ Miq ; if ωα
′′′′

(µ′′′′) ⊂ Mi2 , this implies
the contradiction Mi2 ⊥ Miq ; ... and if ωα

′′′′

(µ′′′′) ⊂ Miq−1 , then the contradiction Miq−1 ⊥ Miq
follows.

These are all the possibilities. One of Mi1 , ...,Miq is final.
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12 Definition of speed independence
Theorem 12.1 For Φ : Bn → Bn and the point µ ∈ Bn, the following statements are equiva-
lent:

(a) the final set A ∈ 𭟋Φ exists such that

∀α ∈ Πn,Oα(µ) ∧ A , ∅,

(b) the final set A ∈ 𭟋Φ exists satisfying

∀α ∈ Πn, ω
α(µ) ⊂ A, (135)

(c) ω+(µ) ∈ ΩΦ,
(d) ω+(µ) ∈ 𭟋Φ,
(e) ∃δ ∈ Πn,

∀λ ∈ Bn,Φλ(ωδ(µ)) ⊂ ωδ(µ) and ∀α ∈ Πn, ω
δ(µ) ∧ ωα(µ) , ∅. (136)

Proof. (a)=⇒(b) We take α ∈ Πn arbitrary and we know that k′ ∈ N exists with

ωα(µ) = {ϕα(µ, k)|k ≥ k′}.

The hypothesis states the existence of k′′ ∈ N such that ϕα(µ, k′′) ∈ A.We use the invariance
of A and we get that ∀k ≥ k′′, ϕα(µ, k) ∈ A thus, for k1 = max{k′, k′′}, we have

ωα(µ) = {ϕα(µ, k)|k ≥ k1} ⊂ A.

(b)=⇒(c) The nonempty set A ⊂ Bn exists, which is final: ∃γ ∈ Πn,∃µ
′ ∈ Bn,

A = ωγ(µ′), (137)

∀λ ∈ Bn,Φλ(A) ⊂ A,

and we have also
ω+(µ)

(135)
⊂ A. (138)

We prove
A ⊂ ω+(µ). (139)

Let α ∈ Πn arbitrary, for which we get that

ωα(µ) ⊂ ω+(µ)
(138)
⊂ A

(137)
= ωγ(µ′), (140)

ωα(µ) = {ϕα(µ, k)|k ≥ k′},

ωγ(µ′) = {ϕγ(µ′, k)|k ≥ k′′}

hold, with k′ ∈ N, k′′ ∈ N suitably chosen. We infer the existence of k1 ≥ k′ and k2 ≥ k′′

with
ϕα(µ, k1)

(140)
= ϕγ(µ′, k2). (141)

We define δ ∈ Πn as

δk =

{
αk, i f k ∈ {0, ..., k1 − 1},
γk−k1+k2 , i f k ≥ k1

(142)

and we have ∀k ∈ {0, ..., k1 − 1},

ϕδ(µ, k)
(142)
= ϕα(µ, k),
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ϕδ(µ, k1) = ϕα(µ, k1)
(141)
= ϕγ(µ′, k2), (143)

∀k ≥ k1,

ϕδ(µ, k) = ϕσ
k1 (δ)(ϕδ(µ, k1), k − k1) (144)

(142),(143)
= ϕσ

k2 (γ)(ϕγ(µ′, k2), k − k1) = ϕγ(µ′, k − k1 + k2).

We obtain, like previously, that

ωδ(µ)
(144)
= ωγ(µ′), (145)

wherefrom
A = ωγ(µ′) = ωδ(µ) ⊂ ω+(µ).

(139) holds.
We conclude that ω+(µ) = A = ωγ(µ′) ∈ ΩΦ.
(c)=⇒(d) The set ω+(µ) is terminal and, from Theorem 7.1, it is also final.
(d)=⇒(e) The fact that ω+(µ) is final means the existence of γ ∈ Πn, µ

′ ∈ Bn with the
properties

ω+(µ) = ωγ(µ′), (146)

∀λ ∈ Bn,Φλ(ω+(µ)) ⊂ ω+(µ). (147)

Let α ∈ Πn arbitrary, fixed. We get the existence of k′ ∈ N, k′′ ∈ N with

ωα(µ) = {ϕα(µ, k)|k ≥ k′},

ωγ(µ′) = {ϕγ(µ′, k)|k ≥ k′′}.

From the fact that ωα(µ)
(146)
⊂ ωγ(µ′) we have the existence of k1 ≥ k′, k2 ≥ k′′ such that

ϕα(µ, k1) = ϕγ(µ′, k2). (148)

We define δ ∈ Πn by (142) and we infer

ωδ(µ)
(145)
= ωγ(µ′).

In other words if ω+(µ) ∈ 𭟋Φ, then δ exists with ω+(µ) = ωδ(µ). Finally for any α′ ∈ Πn,

ωδ(µ) ∧ ωα
′

(µ) = ω+(µ) ∧ ωα
′

(µ) = ωα
′

(µ) , ∅.

(e)=⇒(a) δ ∈ Πn exists such that the set A = ωδ(µ) is final, and in addition, for any
α ∈ Πn, we get

Oα(µ) ∧ A ⊃ ωα(µ) ∧ ωδ(µ)
hyp
, ∅.

Definition 12.1 The system Φ for which one of the previous properties (a), ..., (e) from
Theorem 12.1 is true is called speed independent with respect to µ ∈ Bn.

Remark 12.1 The speed independence of Φ with respect to µ represents that special case
when equation

ω+(µ) = Mi1 ∨ Mi2 ∨ ... ∨ Mip (149)

from Theorems 7.2 and 11.1 with Mi1 , ...,Miq maximal omega limit sets, at least one of which
is final, becomes ω+(µ) = M, where M is final.
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Remark 12.2 We give from [1] the following citations concerning speed independence. ’Of
special interest are those circuits in which the ultimate behavior of the circuit does not de-
pend on the relative speeds of the elements. Such circuits, which will be called speed in-
dependent, may be designed without regard to time tolerances ... of elements and wiring.
Hence they should be easier to design and more reliable than asynchronous circuits which
require time tolerances on the elements for proper operation.’ And later: ’we interpret the
rather loose concept of ultimate behavior as meaning a specification of which terminal set
is attained by an allowed sequence2. Thus if all allowed sequences starting with µ have the
same terminal set we mean that circuit will always arrive, ultimately, at a unique static or
dynamic condition.’

13 Examples
Example 13.1 The next system

(1, 0) � (0, 0) - (0, 1)

(1, 1)
?

is not speed independent with respect to µ = (0, 0) as far as in equation

ω+(0, 0) = {(1, 0)} ∨ {(1, 1)} ∨ {(0, 1)}

three final sets occur, {(1, 0)}, {(1, 1)} and {(0, 1)}.

Example 13.2 The identity 1Bn : Bn → Bn is speed independent with respect to any µ ∈ Bn

because ω+(µ) = {µ} is final.

Example 13.3 The constant function Φ : Bn → Bn, for which µ′ ∈ Bn exists such that
∀µ ∈ Bn,Φ(µ) = µ′ is speed independent with respect to any µ as far as the set ω+(µ) = {µ′}
is final.

Example 13.4 More general than previously, if µ′ ∈ Bn is a fixed point Φ(µ′) = µ′ that
fulfills

∀α ∈ Πn,∀µ ∈ Bn,∃k′ ∈ N,∀k ≥ k′, ϕα(µ, k) = µ′

(µ′ is called a global attractor in this case), the system Φ is speed independent with respect
to any µ, even if it is not the constant function equal with µ′. We give the example of such a
system where µ′ = (1, 1).

(0, 0) - (0, 1) - (1, 1) � (1, 0)

Example 13.5 Even more general than previously, we have the next possibility. The
nonempty set A ⊂ Bn is final and

{µ|µ ∈ Bn,∀α ∈ Πn, ω
α(µ) ⊂ A} = Bn

holds (such an A is said to be totally attractive). Then Φ is speed independent with respect
to any µ and ω+(µ) = A. Here is an example for this situation

(0, 0) - (0, 1) - (1, 1) -� (1, 0)

the system is speed independent with respect to any µ and A = {(1, 1), (1, 0)}.
2An allowed sequence is here a state function ϕα(µ, ·).
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Example 13.6 The function Φ : Bn → Bn, ∀µ ∈ Bn,Φ(µ) = µ is also speed independent
with respect to any µ and ∀µ ∈ Bn, the set ω+(µ) = Bn is final.

Example 13.7 The system

(1, 0, 0) (1, 0, 1)

(0, 0, 0)

6

- (1, 1, 0) - (1, 1, 1)

6

?
�

- (0, 0, 1)

�

(0, 1, 0)
?

(0, 1, 1)
?

6

�

is not speed independent with respect to (0, 0, 0), but it is speed independent with respect to
(1, 1, 0), since ω+(1, 1, 0) = {(1, 1, 1), (1, 0, 1), (0, 0, 1), (0, 1, 1)} is a final set.
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