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Abstract. Control systems have two significant components: controllers and 
filters. Controllers are used to control the output while filters are used to esti- 
mate the internal state of a system from a series of noisy output measurements. 
The design of both require modelling, i.e the formulation of a mathematical 
model, taking into account all the dynamics of the system. There are several 
model based, “optimal” controllers and filters, such as the Kalman filter. How- 
ever, when subjected to unaccounted errors, their performance su ers. “Ro- 
bust” methods, such as H∞ methods for control and filtering, are capable of 
providing satisfactory performance, with respect to a performance parameter, 
even in the presence of noise. They are extensively used in sensitive applica- 
tions such as spacecraft navigation, where a model cannot possibly account for 
all the errors. Their design requires convex optimization to minimize a convex 
function with respect to Linear Matrix Inequalities (LMI). In large scale con- 
vex optimization problems, centralized algorithms cannot work satisfactorily, 
due to slow convergence, and the need for a system with high performance and 
large memory. Distributed algorithms solve this practical constraint on convex 
optimization problems. However, current distributed algorithms are centralized 
and capable of convex optimization only within an infinite time horizon, of- 
fering sub-optimal results in finite time. In this project, we attempt to develop 
a distributed infinite-horizon algorithm which converges to an accurate value 
within a feasible number of iterations, and o ers a speedup of at least 50% over 
traditional methods. 

 
 
 

1 Introduction 
Control systems provide the desired response by controlling the output, and involve a con- 
troller and a plant. The design of the controller is often based on a mathematical model of 
the system. A system is said to be robust, when it is capable of meeting requirements even in 
the presence of model and disturbance uncertainty. 

As classical control schemes fell short of performance requirements, robust control was 
developed. H∞ controller is such a robust controller, which can take into account various 
requirements of the model and ensure the robustness of the system. They are widely used in 
precision intensive applications such as spacecraft navigation and docking. Another similar 
application is in the form of filters. Filters are used for the elimination of noise, or to provide 
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an estimate of the system when the true state cannot be directly measured. H∞ filters are 
used in systems where the noise cannot be modelled accurately due to the complexity of the 
system, but the mission critical nature of the application requires a bound on the worst case 
errors. As they make no assumptions about the nature of noise, they are being considered as 
a strong contender for sensitive applications such as docking. 

In both H∞ methods, a convex function has to be optimized subject to Linear Matrix 
Inequalities (LMI). These problems are solved using convex optimization, which is a compu- 
tationally intensive process. Centralized methods to solve them have existed since the 1970’s 
but due to the computational intensity of these problems for large scale optimization prob- 
lems, their prominence was rather attenuated, until the past decade or so. The main issue was 
slow convergence of these iterative models. [1] 

Distributed methods for convex optimization provide good approximations of the solu- 
tion. The di culty in implementing them lies mostly in formulating a distributed model, 
which can be solved using the appropriate distributed topology. However, most of the meth- 
ods developed for distributed convex optimization are optimal only in an infinite horizon, 
and o er sub-optimal solutions in finite time [2]. However, few algorithms have been the- 
orized and proved to solve convex optimization problems in finite time. These methods, if 
implemented, will find applications in all fields requiring convex optimization: for instance 
machine learning algorithms such as Support Vector Machines (SVM’s) and sparse logistic 
regression[1]. 

The main objective of this work is to implement a distributed algorithm for convex opti- 
mization of Semidefinite Programs (SDP), which can be further fine-tuned to obtain solutions 
in finite time. 

 
2 Design 

2.1 ADMM 
It is worthwile to have a closer look at ADMM [1] as it forms the basis of our research into 
solutions. Specifically, ADMM solves problems of the form : 

 

min 
x,z 

f (x) g(z)  
(1) 

s.t. Ax Bz C 

where x ∈ Rn, z ∈ Rm, A ∈ Rp n, B ∈ Rp m. We calculate the augmented Lagrangian as: 

 
Lρ f (x) g(z) yT (Ax Bz − c) (ρ/2) 

∥Ax Bz − C∥2 
(2) 

The update steps of ADMM consists of the iterations: 

xk 1 arg min Lρ(x, zk, yk) (3a) 
x 

zk 1 arg min Lρ(xk 1, z, yk) (3b) 
z 

yk 1 yk ρ(Axk 1 Bzk 1 − c) (3c) 

Each of the iterative steps execute quickly, running in almost constant time in some 
problems.   This allows a much faster convergence as compared to older methods.   The 
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⟨ ⟩
n
 

∈ ∈

separation of the minimization problem over x and z allows for decomposition when f and g 
are separable, as each update only involves minimizations over f or g. 

 
The ADMM method is quite flexible and accommodates a range of problems, to the 

extent that they can be used to optimize Deep Learning problems[3]. The paper [1] explores 
a number of problems and possible solutions. Most of these applications deal with equality 
constraints, but there are allowances and modifications that explore how the constraints can 
be modified to suit inequality constrained problems. Our specific application requires the use 
of conic constraints, which is not explicitly covered in the paper, but a general idea of how to 
proceed is mentioned. This will be covered in a later section. 

 
2.2 ADMM for sparse semidefinite programming 
Madani et al. [4] applies ADMM to the Optimal Power Flow (OPF) problem. Although OPF 
is di erent from our problem, the basic form of the problem solved by [4] is the same as that 
of ours - convex optimization of a semi-definite program. The paper uses tree-decomposition 
to break the conic constraint on a matrix, into constraints on certain sub-matrices. The method 
also promises guaranteed convergence within a reasonable number of iterations. Moreover, 
each iterative step of ADMM involves only element-wise matrix operations and eigendecom- 
positions, all operations which have a potential for parallelism - and will thus scale well to 
larger problems. This will be discussed further in a later section. 

 
2.3 Semidefinite programming 
As previously mentioned, there may be analytical solutions to each iterative step of ADMM. 
However, depending on the exact problem, finding these solutions may require a deeper un- 
derstanding of mathematics. Fortunately, Madani et al. [4] proposes an algorithm for solving 
sparse semidefinite programs, a category that encompasses the exact problem we are trying 
to solve. We provide a summary of this method here. 

[4] solves semidefinite programs of the form 

min X, M0 
X∈H 

s.t.    ls ≤ ⟨X, Ms⟩ ≤ us, s 1, ..., p, 

X ≽ 0 

where M0, M1, ..., Mp ∈ Hn and 

(ls, us) ∈ ({−∞} ∪ R) (R ∪ ∞}) 

(4) 

for every s 1, ..., p 
This work proposes that if M0, M1, ..., Mp are sparse, the conic constraint on X can be 

decomposed and expressed in terms of some principal submatrices of X. To perform this de- 
composition, we first find the representative graph of the SDP problem, G (VG, EG), based 
on the matrices M0, ..., Mp. We then perform a tree decomposition on G to yield T (VT , ET ) 
with a set of bags VT (C1, C2, ..., Cq). These bags are used to define the submatrices of X : 
X C1, C1 , X C2, C2 , ..., X Cq, Cq . 

n n
 

Definition 1: For an arbitrary matrix X H , define its sparsity pattern as N F . Define 
the set 

S (N) ≜ X ∈ Hn X ◦ N X
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q 

p 

∈

∈

s 0 

r 1 s 0 

r 1 s 0 s 0 

Definition 2: Suppose that T (VT , ET ) is a tree decomposition of the representative 
graph G with the bags C1, C2, ..., Cq 

1. For r 1, ...q, define Cr ∈ Fn as a sparsity pattern whose (i, j entry is 1 if and only if 
i, j ⊆ Cr and is 0 otherwise for every i, j ∈ 1, ..., n

2. Define C ∈ Fn as an aggregate sparsity pattern whose (i, j) entry is equal to 1 if and 
only if i, j ⊆ Cr for atleast one index r ∈ 1, ..., p

3. For s 0, 1, ..., p define Ns ∈ Fn as the sparsity pattern of Ms 

Definition 3: For every l ∈ {−∞} ∪R and u ∈ R∪{∞}, define the convex indicator function 
Il,u : R → 0, ∞} as 

Il,u ≜ 
(
 

0 if l ≤ x ≤ u 
∞ otherwise 

 
(5) 

Definition 4: For every r ∈ 1, 2, .., q}, define the convex indicator function r : Hn ←
0, ∞} as 

r(X) ≜ 
(  

0 if X Cr, Cr ≽ 0 
 

(6) 
∞ otherwise 

We finally apply ADMM to a reformulation of the SDP problem: 
p q 

min z0 
X 

Ils ,us (zs) 
X 

r(XC;r) 
X∈S (C) 

p
 

XN;s∈S (Ns) s 0 
XC;s∈S (Cr) r 1 

zs∈R s 0 

s 1 r 1  
 

(7) 
subject to   X ◦ Cr XC;r, r 1, 2, ..., q 

X ◦ Ns XN;s, s 0, 1, ..., p 
zs ⟨Ms, XN;s⟩, s 0, 1, .., p 

Introduce the Lagrange multipliers: 

1. ΛC;r S (Cr) is the Lagrange multiplier associated with the first constraint for r 
1, 2, ..., q 

2. ΛN;s S (Ns) is the Lagrange multiplier associated with the second constraint for s 
0, 1, ...p 

3. λz;s ∈ R is the Lagrange multiplier associated with the third constraint for s 0, 1, ...p 

To apply ADMM, we regroup the primal and dual variables into blocks 

(Block 1)   1 (X, zs
p

 

(Block 2)   2 ( XC;r
q    , XN;s

p    ) 
(Dual)    ( ΛC;r

q    , ΛN;s
p    , λz;s

p    ) 

1, 2 and  play the roles of x, y and λ in the standard formulation of ADMM respec- 
tively. 

The iterative steps of ADMM with respect to the formulation in equation (7) is presented 
in Table 1. Every step amounts to either an element-wise multiplication or division, an eigen- 
value decomposition, a frobenius inner product, or a frobenius norm. Most of these operations 
are embarrassingly parallel and can be made to exploit the parallel architecture of CUDA sup- 
ported machines. This algorithm converges within a reasonable number of iterations, and can 
provide an accuracy of up to 10−25. 
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p 

F 

Cr ◦ (XC;r − ΛC;r/u) Ns ◦ (XN ;s − ΛN;s/u)  ⊘C  Ns 
 

0 N;0 z;0 

s N;s z;s 

N;s N;s s 

C;r C;r C;r 

N;s N;s N;s 

z;s z;s s N;s 

 

 
 

Block 1 

 

k 1  X
q 

 

 
k k X 

 

 
k k   X

q X   
 

 
zk 1 ⟨M0 , Xk ⟩ − (λk 1)/µ 

zk 1 max min ⟨Ms, Xk   ⟩ − λk   /µ, us , ls 

Block 2 Xk 1 (Xk 1 ◦ Cr Λk /µ)
C;r 
k 1 

C;r 
zk 1 λk   /µ − ⟨Ms, Ns ◦ Ck 1 Λk   /µ 

 ys
s
 

z;s 1 ∥Ms ∥2 
N;s 

Xk 1 (Ns ◦ Xk 1 Λk /µ yk 1 Ms ) 

 
 

Dual Λk 1 Λk µ(Xk 1 ◦ Cr − Xk 1 ) 

Λk 1 Λk µ(Xk 1 ◦ Ns − Xk 1 ) 

λk 1 λk   µ(zk 1 − ⟨Ms, Xk 1 ⟩) 

 
 

Table 1. ADMM for decomposed SDP 
 
 
2.4 Summary of design 
To summarize, the iterative ADMM algorithm decomposes the problem into simple iterative 
steps. Depending on the complexity of f and g, each x and z update may be done in a very 
simple manner. We plan to use the method proposed in [4], with the reformulated problem in 
equation (7), which involves iterative steps that can be parallelized to a significant extent. If 
required, ADMM can further be extended to solve global consensus problems in a distributed 
manner, which is the same kind of problem solved by the finite horizon algorithm in [2]. This 
allows us to use distributed computing for both the pre-trainer ADMM, and the finite horizon 
algorithm, with the same problem formulation. 

 
3 Implementation 

3.1 Parallel Platforms 
PyCUDA is a framework which allows CUDA API access through Python. As it allows us to 
run custom kernels written in C, it was trivial to port CUDA C code to python. The gpuarray 
class in PyCuda allows us to define gpuarrays, which provides an interface to the arrays 
stored on the GPU’s.It is also compatible with numpy matrices and allows us to manipluate 
gpuarrays with numpy-like functions. Using its sum sum() method, we can reduce a matrix 
to a single value, faster than any custom implementation we could write. Hence, our package 
was implemented in PyCUDA. 

 
3.2 Tree Decomposition 
Using the ADMM algorithm proposed in [4] involves computing a tree decomposition of a 
graph. A tree decomposition is not unique, and can be computed in several di erent ways [6]. 
However, to obtain optimal resuslts, [4] recommends the use of a treewidth decomposition 

s 1 s 1 r 1 

p 

r 1 
 X Cr 
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h −

4    2    0    1    2  

 
 

  

x 
− 2 ⟨ 2 

i 1 j 1 

or the minimum-filling problem. As the treewidth problem is better studied, we utilize a 
treewidth decomposition for the representative graph. This code was not implemented by us, 
it was imported from Hiaso Tamaki’s github, and contains the implementation of [5]. [5] 
finds an exact decomposition by combining new algorithms for exact and heuristic listing of 
minimal separators. Using this code, the tree decomposition was obtained. 

 
3.3 A representative problem 

In order to showcase the accuracy and e cacy of the algorithm, we have applied it to an SDP 
relaxation of the travelling salesman problem (TSP) based on [6]. The purpose of an SDP 
relaxation is to obtain a convex optimization problem which yields an optimal lower bound 
on the objective of the original problem [7]. The travelling salesman problem is stated as 
follows: If a salesman, starts from his home city, and visits exactly once each city on a given 
list of cities and then returns home. He tries to select the order of the cities so that the total 
distance travelled is minimized. 

The input to the problem is a complete graph. The SDP relaxation of the TSP is stated 
below [6] in the same form as in Eqn 4.1: 

 n n 

min 1 D, X⟩ α X X 
di j 

s.t    2 α − β ≤ ⟨Ai, X⟩ ≤ 2 α − β i 1, ..., n 
2(nα − β) ≤ ⟨Bi, X⟩ ≤ 2(nα − β) i 1, ..., n 
2(α − 1) ≤ ⟨Ci j, X⟩ ≤ 2α i, j 1, ..., n 

X ≽ 0 

Here α and β are parameters, whose values are taken as 1 and 2  2 cos 2π respectively. n 
is the number of nodes in the TSP graph, and subsequently the degree of the matrices in the 
problem. Ai is an n  n matrix with 1 at position (i, i) and 0 otherwise. Bi is an n  n matrix 
with 2 at position (i, i), all other elements in the ith row and ith column are all 1. Ci, j is an 
n n matrix with 1 at positions (i, j) and ( j, i) and 0 otherwise. 

The matrix D represents the distance matrix of the problem, i.e the element at position 
(i, j) provides the distance between the ith and jth matrices. The matrix D used for the imple- 
mentation is given below: 

 
0   3   4   1   3 
3   0   2   3   4 

 
1   3   1   0   3 
3   4   2   3   0 

 
Running the same problem in CVXPY gave the result 10.99, whereas our algorithm gave the 
result 9.5 - a lower bound for the true minimized objective value 10. 

 
3.4 The target problem 
We formulated the actual problem we intend to solve based on [8]. As solving this problem 
with ADMM is quite complex given its nature, we used the CVXPY framework to solve the 
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 ∗ ∗ −R̃ 0  
˜
 

"  #−x
  ≤ 0

 

 ∗ −ϵI 0 0 ≤0 
1 

  ∗ −µI Y ≤ 0 
∗ ∗ −vI 

problem.The problem is stated here for completeness: 
min µ 

ε,δ,X,Y,R̃,Q̃ 

 
with respect to the LMI constraints, 

Ω XET YT GT YT X   

∗ ∗ ∗ −Q 
T 
e0 

∗ −x 

−X vδI 0 0   

 
where Ω XT AT A1X B1Y YT BT εD1DT , D1, A1, E1 ∈ R4 4, B1, G1 ∈ R4 2 and 

1 1 1 
xe0 ∈ R4 1. 

Upon solving the problem using the CVXPY framework, we got the following results. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. CVXPY Results 
 

It is worth mentioning here that running the problem using the CVXPY framework took 
997 ms. But considering the run-time of the simplistic problem we solved, it might be possi- 
ble to cut the current run-time in half using distributed, iterative algorithms. 

 
3.5 Summary of Results 
We have designed a package to apply the ADMM algorithm detailed in [4] to a semi-definite 
programming problem, using PyCUDA for parallel computing. This package is written in 
Python, and its individual parallel modules have been tested to prove its superiority over 
sequential implementations. In addition, the package was applied to an SDP relaxation of the 
travelling salesman problem which gave accurate results. 
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3.6 Future Work 
The proposed work produces infinite horizon solutions to the optimization problem. If a 
fine-tuning is required, a distributed implementation of the method proposed in [2] can be 
applied to obtain a finite horizon solution. The algorithm has to be further tested on the target 
problem. 
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