Weakly Tripotent Elements in Quaternion Rings over \mathbb{Z}_p

Wei Jun Lee1, Kiat Tat Qua1, and Hong Keat Yap1

1Department of Mathematical and Actuarial Sciences, Universiti Tunku Abdul Rahman, 43000 Kajang, Selangor, Malaysia.

Abstract. Let R be a ring. An element $x \in R$ is weakly tripotent if x can be written as $x^3 = x$ or $x^3 = -x$. In this paper, we discuss weakly tripotency in quaternion rings over \mathbb{Z}_p, \mathbb{H}/\mathbb{Z}_p. We also give some conditions for the element $x \in \mathbb{H}/\mathbb{Z}_p$ to be weakly tripotent.

1 Introduction

In the paper of Danchev [1], an element x of ring R is said to be weakly tripotents if $x^3 = x$ or $x^3 = -x$. A ring R is called weakly tripotent if all of its elements are weakly tripotent. In [2], Aristidou and Demetre provide examples and they also establish some conditions for idempotency in \mathbb{H}/\mathbb{Z}_p, where p is prime. Besides that, Aristidou and Hailemariam (in [3]) used the similar methods in [2], they able to give some conditions for tripotency of quaternion rings over \mathbb{Z}_p (p is prime). In this paper, we give some conditions for a quaternion ring over \mathbb{Z}_p (p is prime) to be weakly tripotent.

2 Weakly tripotent elements \mathbb{H}/\mathbb{Z}_p

A set of real quaternions, we denote it as \mathbb{H}, was first introduced by Hamilton [4] in 1866 as an extension of complex number into four dimensions. A quaternion can be written as the form $x = x_0 + x_1 i + x_2 j + x_3 k$ where x_n are reals and i, j, k are complex elements such that $i^2 = j^2 = k^2 = ij = jk = -1$. Note that $ij = k = -ji$, $jk = i = -kj$, and $ki = j = -ik$.

When multiplying a pair of quaternions $x = x_0 + x_1 i + x_2 j + x_3 k$ and $y = y_0 + y_1 i + y_2 j + y_3 k$, we can compute the product xy as

$$xy = (x_0 y_0 - x_1 y_1 - x_2 y_2 - x_3 y_3) + (x_0 y_1 + x_1 y_0 + x_2 y_3 - x_3 y_2)i + (x_0 y_2 + x_2 y_0 + x_1 y_3 - x_3 y_1)j + (x_0 y_3 + x_3 y_0 + x_1 y_2 - x_2 y_1)k.$$

For the case, $x \in \mathbb{H}$ and $x = a_0 + a_1 i + a_2 j + a_3 k$, where $a_0 \neq 0$, $a_1 = a_2 = a_3 = 0$. The only weakly tripotent elements are $x = -1, 0$ and 1. We are focus on whether some weakly

*Corresponding author: yaphk@utar.edu.my

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (https://creativecommons.org/licenses/by/4.0/).
tripotent elements are in the quaternion rings over \(\mathbb{Z}_p \). We first give the following two propositions and prove that the element \(x \) is weakly tripotent if the conditions stated in the proposition have been satisfied.

Proposition 1. Let \(x \in \mathbb{H}/\mathbb{Z}_p \) be a quaternion element of the form \(x = a_0 + a_1 i \), where \(a_0 \) and \(a_1 \) are nonzeros. Then \(x^3 = x \) if and only if \(a_0^2 = \frac{1+p}{4} \) and \(a_1^2 = \frac{p-1}{4} \) and \(x^3 = -x \) if and only if \(a_0^2 = \frac{p-1}{4} \) and \(a_1^2 = \frac{1+p}{4} \), where \(p \) is prime and \(p \neq 2, 3 \).

Proof. Let \(x = a_0 + a_1 i \) and \(x \) is weakly tripotent in \(\mathbb{H}/\mathbb{Z}_p \). Then \(x^3 = x \) or \(x^3 = -x \).

For \(x^3 = x \), by Proposition 1 in [3], it follows that \(a_0^2 = \frac{1+p}{4} \) and \(a_1^2 = \frac{p-1}{4} \).

For \(x^3 = x \), we have, \((a_0 + a_1 i)^3 = -(a_0 + a_1 i)\). This follows that \(a_0^3 - 3a_0a_1^2 + (3a_0^2a_1 - a_1^3)i = -a_0 - a_1 i \). Thus, we have these two equations:

\[
\begin{align*}
a_0^3 - 3a_0a_1^2 &= -a_0 \\
3a_0^2a_1 - a_1^3 &= -a_1 .
\end{align*}
\]

Simplify the above equations, we will obtain

\[
\begin{align*}
a_0^2 - 3a_1^2 &= -1 \quad (1) \\
a_0^2 - a_1^2 &= -1 \quad (2)
\end{align*}
\]

By solving the equations (1) and (2), we have

\[
a_0^2 - 3a_1^2 = 3a_0^2 - a_1^2 \Rightarrow -2a_0^2 = 2a_1^2 \Rightarrow a_0^2 = -a_1^2 \quad \text{------(3).}
\]

By substitute \(a_0^2 = -a_1^2 \) into (1) and we get

\[
-a_1^2 - 3a_1^2 = -1 \Rightarrow -4a_1^2 = -1 \Rightarrow a_1^2 = \frac{1}{4} \quad \text{------(4).}
\]

Since \(p = 0 \pmod{p} \), \(a_1^2 = \frac{1-p}{4} \). Substitute \(a_1^2 \) into (3) and we get \(a_0^2 = 4^{-1}(p - 1) \).

To see if the quantities \(\frac{1-p}{4} \) and \(\frac{p-1}{4} \) are squares mod \(p \), we calculate the Legendre Symbol for \(\frac{1-p}{4} \) and \(\frac{p-1}{4} \) respectively. The first gives:

\[
\left(\frac{1-p}{4} \right) = 1
\]

and the second gives:

\[
\left(\frac{p-1}{4} \right) = \left(\frac{p-1}{p} \right) \left(\frac{1}{p} \right) = \left(\frac{p-1}{p} \right) \cdot 1 = (p - 1) \frac{p-1}{2} = (-1) \frac{p-1}{2} = \begin{cases} 1, & \text{if } p \equiv 1 \pmod{4} \\ -1, & \text{if } p \equiv 3 \pmod{4} \end{cases}
\]

Hence, there are no weakly tripotents of the form \(a_0 + a_1 i \), if \(p \equiv 3 \pmod{4} \). It follows that if weakly tripotent element exists in the form of \(a_0 + a_1 i \) with \(a_0 \) and \(a_1 \) both nonzero,
then \(p \equiv 1 \text{(mod 4)} \) and in this case, \(a_0^2 = \frac{p-1}{4} \) and \(a_1^2 = \frac{1-p}{4} \). Therefore, existence of weakly tripotent elements may classify the nature of \(p \). For the converse, given \(a_0^2 = \frac{p-1}{4} \) and \(a_1^2 = \frac{1-p}{4} \), we have that:

\[
x^3 = (a_0 + a_1 i)^3 = a_0^3 - 3a_0a_1^2 + (3a_0^2a_1 - a_1^3)i
\]

\[
= a_0(a_0^2 - 3a_1^2) + a_1(3a_0^2 - a_1^2)i
\]

\[
= a_0(\frac{p-1}{4} - 3 \frac{1-p}{4}) + a_1\left(3 \frac{p-1}{4} - \frac{1-p}{4}\right)i
\]

\[
= a_0(p-1) + a_1(p-1)i
\]

\[
= -a_0 - a_1 i, \text{as } p = 0 \text{ (mod } p)\]

\[
= -x.
\]

Hence, \(x \) is weakly tripotent. Similarly, in Proposition 1 (in [3]), if \(a_0^2 = \frac{1-p}{4} \) and \(a_1^2 = \frac{p-1}{4} \), we have that \(x^3 = x \).

Remark 1. In Proposition 1, if we consider \(p = 3 \), in (4), it follows that \(a_0^2 = 1 \text{(mod 3)} \) and \(a_1^2 = 2 \text{ (mod 3)} \), which has no set of solutions for \(a_0 \) and \(a_1 \) in \(\mathbb{Z}_3 \). For \(p = 2 \), in equation (4), it leads to \(0a_1^2 = 1 \), which is impossible.

Proposition 2. Let \(x \in \mathbb{H}/\mathbb{Z}_p \) in the form \(x = a_1 i + a_2 j + a_3 k \), where at least two of \(a_1, a_2, a_3 \) are non-zero. Then \(x^3 = x \) if and only if \(a_1^2 + a_2^2 + a_3^2 = p - 1 \) and \(x^3 = -x \) if and only if \(a_1^2 + a_2^2 + a_3^2 = 1 - p \).

Proof. We first find the general solution by using the product of a quaternion, \(x^3 = (a_0 + a_1 i + a_2 j + a_3 k)^3 \).

\[
x^3 = (a_0 + a_1 i + a_2 j + a_3 k)^2(a_0 + a_1 i + a_2 j + a_3 k)
\]

\[
= (a_0^2 - a_1^2 - a_2^2 - a_3^2)
\]

\[
+ (a_0a_1 + a_1 a_0 + a_2 a_3 - a_3 a_2)i
\]

\[
+ (a_0 a_2 + a_2 a_0 + a_1 a_3 - a_3 a_1)j
\]

\[
+ (a_0 a_3 + a_3 a_0 + a_1 a_2 - a_2 a_1)k(a_0 + a_1 i + a_2 j + a_3 k)
\]

\[
= (a_0^2 - a_1^2 - a_2^2 - a_3^2)
\]

\[
+ (2a_0 a_1)i + (2a_0 a_2)j + (2a_0 a_3)k(a_0 + a_1 i + a_2 j + a_3 k)
\]

\[
= (a_0^2 - a_1^2 - a_2^2 - a_3^2)a_0
\]

\[
- (2a_0 a_1)a_1 - (2a_0 a_2)a_2 - (2a_0 a_3)a_3
\]

\[
+ [(a_0^2 - a_1^2 - a_2^2 - a_3^2)a_1)
\]

\[
+ [(2a_0 a_1)a_0 + (2a_0 a_2)a_3 - (2a_0 a_3)a_2]i
\]

\[
+ [(a_0^2 - a_1^2 - a_2^2 - a_3^2)a_2)
\]

\[
+ (2a_0 a_2)a_0 + (2a_0 a_1)a_3 - (2a_0 a_3)a_1]j
\]

\[
+ [(a_0^2 - a_1^2 - a_2^2 - a_3^2)a_3)
\]

\[
+ (2a_0 a_3)a_0 + (2a_0 a_1)a_2 - (2a_0 a_2)a_1]k
\]

\[
= a_0(a_0^2 - a_1^2 - a_2^2 - a_3^2 - 2a_2^2 - 2a_3^2)
\]

\[
+ a_1(a_0^2 - a_1^2 - a_2^2 - a_3^2 + 2a_0^2)i
\]

\[
+ a_2(a_0^2 - a_1^2 - a_2^2 - a_3^2 + 2a_0^2)j
\]

\[
+ a_3(a_0^2 - a_1^2 - a_2^2 - a_3^2 + 2a_0^2)k
\]

\[
= a_0(a_0^2 - 3a_1^2 - 3a_2^2 - 3a_3^2)
\]

\[
+ a_1(3a_0^2 - a_1^2 - a_2^2 - a_3^2)i
\]

\[
+ a_2(3a_0^2 - a_1^2 - a_2^2 - a_3^2)j
\]

\[
+ a_3(3a_0^2 - a_1^2 - a_2^2 - a_3^2)k
\]
Let \(x = a_1i + a_2j + a_3k \). Then for \(x^3 = x \), by Proposition 2 in [3], we have \(a_1^2 + a_2^2 + a_3^2 = p - 1 \).

For \(x^3 = -x \). We have \((a_1i + a_2j + a_3k)^3 = -(a_1i + a_2j + a_3k)\), hence
\[
\begin{align*}
a_1(3a_0^2 - a_1^2 - a_2^2 - a_3^2)i + a_2(3a_0^2 - a_1^2 - a_2^2 - a_3^2)j \\
+ a_3(3a_0^2 - a_1^2 - a_2^2 - a_3^2)k &= -a_1i - a_2j - a_3k.
\end{align*}
\]

We will get the following three equations:
\[
\begin{align*}
a_i(-a_i^2 - a_i^2 - a_i^2) &= -a_i; \ i = 1, 2, 3.
\end{align*}
\]

From the above equations we obtain:
\[
\begin{align*}
a_i &= 0 \text{ or } -a_i^2 - a_i^2 - a_i^2 = -1; \ i = 1, 2, 3.
\end{align*}
\]

From the equation \(-a_i^2 - a_i^2 - a_i^2 = -1\), we have \(a_1^2 + a_2^2 + a_3^2 = 1\) and we can also write in \(a_1^2 + a_2^2 + a_3^2 = 1 - p\) as \(p = 0 \mod p\).

For the converse, the hypothesis given that \(a_1^2 + a_2^2 + a_3^2 = 1 - p\). Hence,
\[
\begin{align*}
x^3 &= (a_1i + a_2j + a_3k)^3 \\
&= a_1(-a_1^2 - a_2^2 - a_3^2)i \\
&\quad + a_2(-a_1^2 - a_2^2 - a_3^2)j + a_3(-a_1^2 - a_2^2 - a_3^2)k \\
&= a_4(p - 1)i + a_2(p - 1)j + a_3(p - 1)k \\
&= -a_1^2i - a_2^2j - a_3^2k \text{ as } p = 0 \mod p \\
&= -x.
\end{align*}
\]

Therefore, \(x^3 = -x\).

If \(a_1^2 + a_2^2 + a_3^2 = p - 1\), then by Proposition 2 in [3], thus \(x^3 = x\) \(\square\)

Remark 2. In Proposition 2, if we consider \(p = 3\), for the case \(x^3 = -x\), it follows that \(a_0^2 = 2 \mod 3\) which has no solutions in \(\mathbb{Z}_3\). For \(p = 2\), it leads to \(0a_1^2 = 1\), which is impossible.

Theorem. Let \(x \in \mathbb{H}/\mathbb{Z}_p\) where \(p\) is a prime number where \(p \neq 2, 3\). Let \(x\) be an element of the form \(x = a_0 + a_1i + a_2j + a_3k\), where \(a_0 \neq 0\) and at least one of \(a_1, a_2, a_3\) is non-zero. Then, \(x^3 = x\) if and only if \(a_0^2 = \frac{1-p}{4}\) and \(a_1^2 + a_2^2 + a_3^2 = \frac{p-1}{4}\) and \(x^3 = -x\) if and only if \(a_0^2 = \frac{p-1}{4}\) and \(a_1^2 + a_2^2 + a_3^2 = \frac{1-p}{4}\).

Proof. Let \(x = a_0 + a_1i + a_2j + a_3k\). If \(x^3 = x\), then by follow readily by Theorem 1 in [3]. If \(x^3 = -x\), then \((a_0 + a_1i + a_2j + a_3k)^3 = -(a_0 + a_1i + a_2j + a_3k)\)

From the result in Proposition 2, we get:
\[
\begin{align*}
a_0(a_0^2 - 3a_1^2 - 3a_2^2 - 3a_3^2) + a_1(3a_0^2 - a_1^2 - a_2^2 - a_3^2)i \\
+ a_2(3a_0^2 - a_1^2 - a_2^2 - a_3^2)j + a_3(3a_0^2 - a_1^2 - a_2^2 - a_3^2)k \\
&= -a_0 - a_1i - a_2j - a_3k.
\end{align*}
\]

Then, we obtain four equations as listed below, by equating the corresponding coefficients:
\[
\begin{align*}
a_0(a_0^2 - 3(a_1^2 + a_2^2 + a_3^2)) &= -a_0 \\
a_i(3a_0^2 - (a_1^2 + a_2^2 + a_3^2)) &= -a_i; \ i = 1, 2, 3.
\end{align*}
\]
From the above four equations we get:

\[a_0 = 0 \text{ or } a_0^2 - 3(a_1^2 + a_2^2 + a_3^2) = -1 \]
\[a_i = 0 \text{ or } 3a_0^2 - (a_i^2 + a_2^2 + a_3^2) = -1; \ i = 1, 2, 3. \]

Since \(a_0 \neq 0 \), we have \(a_0^2 - 3(a_1^2 + a_2^2 + a_3^2) = -1 \) and from the last three equations we have \(3a_0^2 - (a_1^2 + a_2^2 + a_3^2) = -1 \). Let \(a_1^2 + a_2^2 + a_3^2 = \lambda \). It follows by two equations:

\[a_0^2 - 3\lambda = -1 \quad (5) \]
\[3a_0^2 - \lambda = -1 \quad (6). \]

By equating both equations,

\[a_0^2 - 3\lambda = 3a_0^2 - \lambda \Rightarrow -2a_0^2 = 2\lambda \Rightarrow a_0^2 = -\lambda. \]

Substitute \(a_0^2 = -\lambda \) into (5) and we get \(-4\lambda = -1 \Rightarrow \lambda = \frac{1}{4} = \frac{1-p}{4} \) as \(p = 0 \) (mod \(p \)).

Hence, \(a_1^2 + a_2^2 + a_3^2 = \frac{1-p}{4} \). And since \(a_0^2 = -\lambda \), we get \(a_0^2 = \frac{p-1}{4} \).

For the converse, given \(a_0^2 = \frac{p-1}{4} \) and \(a_1^2 + a_2^2 + a_3^2 = \frac{1-p}{4} \). Hence,

\[x^3 = (a_0 + a_1 i + a_2 j + a_3 k)^3 \]
\[= a_0(3a_0^2 - 3(a_1^2 + a_2^2 + a_3^2)) + a_1(3a_0^2 - (a_1^2 + a_2^2 + a_3^2)) i \]
\[+ a_2(3a_0^2 - (a_2^2 + a_2^2 + a_3^2)) j + a_3(3a_0^2 - (a_1^2 + a_2^2 + a_3^2)) k \]
\[= a_0 \left(\frac{p-1}{4} - 1 \right) i + a_1 \left(3 \frac{p-1}{4} - \frac{1-p}{4} \right) i + a_2 \left(3 \frac{p-1}{4} - \frac{1-p}{4} \right) j + a_3 \left(3 \frac{p-1}{4} - \frac{1-p}{4} \right) k \]
\[= a_0(p - 1) + a_1(p - 1)i + a_2(p - 1)j + a_3(p - 1)k \]
\[= -a_0 - a_1 i - a_2 j - a_3 k, \text{ as } p = 0 \text{ (mod } p) \]
\[= -x. \]

Hence, we have \(x^3 = -x \). \(\square \)

3 Conclusion and recommendations

There are some potential applications of idempotents, tripotent, or more broadly \(k \)-potent ring elements. Wu [5] defined these \(k \)-potent matrices and their variations using the equation \(A^k = \lambda I + \mu A \), where \(\lambda, \mu = 0 \), \(\lambda, \mu \in \{-1, 0, 1\} \), and \(k \geq 2 \). In [5], Wu demonstrated the utility of \(k \)-potent matrices in digital image encryption. The encryption method involves utilizing a series of encryption key matrices to modify the gray level of each pixels’ matrix multiplications, masking the original image and producing a transformed version.

Lastly, we have found out that weakly tripotent elements exist in quaternion rings over \(\mathbb{Z}_p \). As the future recommendations, the weakly tripotent with other classes of rings can be further investigated. For example, every element is the sum of two weakly tripotents and a tripotent or each element is the sum of a weakly tripotent, a tripotent and an idempotent.

The authors would like to thank for the financial support provided by Universiti Tunku Abdul Rahman Research Fund, Malaysia (IPSR/RMC/UTARRF/2023-C1/Y01).
References