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Abstract. This paper presents a method for detecting epileptic seizures 
based on electroencephalogram (EEG) analysis using a deep learning model 
based on Bidirectional Long Short-Term Memory (BiLSTM). The proposed 
model architecture allows taking into account temporal dependencies and 
nonlinear dynamics of EEG signals, which makes it effective for recognizing 
patterns associated with epileptic seizures. The model uses frequency, 
dynamic, fractal, correlation and statistical characteristics of the EEG signal 
as informative features. The study includes the stages of data preprocessing, 
feature extraction and neural network training. To improve the accuracy of 
the model, data normalization and regularization methods were used. The 
experimental results obtained on the publicly available TUH EEG dataset 
demonstrate high performance of the model in detecting epileptic activity: 
Sensitivity 96.2, Specificity 99.8, F1-score 0.77, AUC 0.98.  

1 Introduction 

Epilepsy is a common neurological disorder characterized by involuntary seizure activity. 
This disease can lead to a variety of social restrictions, including restrictions in professional 
activities, which significantly reduces the quality of life of patients. Finding effective 
methods for diagnosing and treating epilepsy is a major task in modern medicine. Therefore, 
the development of algorithms and models of machine learning and artificial intelligence that 
can improve the quality of diagnosis and treatment of this disease is an urgent task [1]. 

Despite significant advances in the development of algorithms for classification tasks 
based on neural networks, including the task of diagnosing epilepsy from an EEG signal, the 
de facto standard today is still manual analysis of electroencephalogram data by a neurologist. 
This is due to a number of problems, not least of which are the difficulty of interpreting the 
classification result issued by a neural network, the high degree of individuality of the EEG, 
the low signal-to-noise ratio, and the high level of false alarms of existing algorithms, forcing 
doctors to review too much data [2-4]. 
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Deep learning methods are often a “black box”. It is difficult to explain why a neural 
network made a particular decision. Therefore, researchers are currently making great efforts 
to find methods that allow interpreting the results of neural network models [5]. 

Developing efficient methods for interpreting the results produced by models could 
improve the clinical acceptance of neural network methods in medical practice. 

Examples of software for automated seizure detection approved for clinical use already 
exist. The FDA-approved Persyst software suite has comparable performance to experienced 
senior EEG technologists, approaching the level of human EEG seizure detection 
performance [6-7]. There are also other commercial tools such as Encevis (EpiScan) and 
Besa [2]. 

However, existing methods still do not provide all the requirements necessary for their 
clinical use. A model that realizes seizure detection automation for patients of different 
genders and ages, taking into account individual characteristics, while having high sensitivity 
and low false alarm rate is still an urgent need for epilepsy clinics [2]. 

2 Methodology 

2.1 Dataset description 

In our experiment, we used the open dataset TUH EEG, Temple University, Philadelphia, 
USA [8]. This dataset is the world's largest set of EEG recordings designed to support 
research on the problem of automatic detection of epileptic seizures. The dataset contains 
several corpuses, each of which is devoted to specific aspects of this problem, such as, for 
example, identifying artifacts in EEG recordings or detecting a specific group of epileptic 
events. In our work, we used the TUH EEG Seizure Corpus (TUSZ). We considered the task 
of automatic detection of epileptic seizures as a problem of binary classification 
(pathology/norm) of supervised learning. For our experiments, we used a truncated dataset 
formed in such a way that it preserved the balance of classes present in the original dataset. 

2.2 Calculation of informative features 

There are different approaches for detecting epileptic events. The choice of a suitable 
classification model has a decisive impact on the quality of the result obtained by the 
algorithm. Recent studies show that deep learning methods on raw EEG signals outperform 
traditional machine learning methods [3,9]. The advantage of deep learning models is their 
ability to automatically extract and learn informative features from the input data. 

Convolutional neural networks (CNNs) are often used to analyze EEG data. Recently, 
long short-term memory (LSTM) networks have proven themselves to be effective in dealing 
with sequential data, such as EEG signal data. They cope well with raw time series, as they 
are able to capture temporal dependencies. At the same time, the data fed to the neural 
network can be either raw time series or pre-processed using various methods, such as the 
sliding window method for computing informative features. 

The choice of the method for generating input data for a neural network depends on the 
specific task and the characteristics of the data. In [2], independent component analysis (ICA) 
was used to clean the recording from artifacts. In [1], EEG signals were pre-processed using 
empirical mode decomposition followed by bandpass filtering to remove noise, and then 
automated features were extracted from the signal using a three-layer convolutional neural 
network. In [4], multispectral informative features were pre-calculated from raw EEG, and 
then these prepared data were fed to the input of the neural network. In [10], informative 
features were calculated and then principal component analysis (PCA) was used to reduce 
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the dimensionality of the input data. We chose an approach in which informative features are 
calculated using a sliding window method on raw EEG data. This approach improves the 
performance of the neural network model by providing it with additional features that 
characterize the nature of the data. Since EEG data have complex time dependencies, 
calculating additional features provides the model with additional information for 
generalization. 

To calculate informative features, the original raw EEG recording was divided into 
windows for each channel independently. We selected the window width based on the 
experiments conducted in the previous work related to the calculation of fractal 
characteristics of the signal. Although shorter windows are found in the works of other 
authors, they used raw EEG data [9,11-12]. 

The calculation of informative features was performed using the sliding overlapping 
window method with a window width of 4 s and a shift of 25% of the window width. For 
each window, 26 informative features were calculated, which can be divided into the 
following categories: 

 Frequency characteristics: spectral power of the signal in the delta, theta, alpha, 
beta and gamma frequency ranges. These parameters represent information about 
the level of brain activity in different frequency ranges. 

 Dynamic characteristics: sample entropy, maximal Lyapunov exponent, 
correlation dimension. These indicators help to assess the complexity and 
randomness of time series. 

 Fractal characteristics: Hurst exponent, detrended fluctuation analysis (DFA), 
Higuchi fractal dimension. Fractal analysis provides additional information about 
the structure and dynamics of EEG signals. 

 Correlation characteristics: autocorrelation. This parameter describes the degree of 
linear relationship between the values of a time series at different time intervals, 
which allows one to evaluate the temporal structure of the signal. 

 Statistical characteristics: maximum, minimum, moments: mean (1st raw moment 
M1), variance (2nd central moment M2), skewness (normalized 3rd central 
moment M3), kurtosis (normalized 4th central moment M4); median, standard 
deviation, the first (Q1) and the third quartile (Q3), interquartile range limits (IQR): 
the lower Q1−1.5 IQR and the upper Q3 + 1.5 IQR; 5th and 95th percentiles. 
Statistical analysis provides information about the distribution of signal values, 
which gives insight into the overall behavior of the system. 

 

 

Fig. 1 Heatmap of correlations between informative features. 
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Figure 1 shows a heatmap representing the correlations between different information 
features. 

The correlation heat map is a powerful tool for visualizing the relationships between 
features. It is used in conjunction with feature selection and model testing methods to select 
the optimal set of features to find a balance between the best performance and model 
complexity. 

2.3 Preliminary data preparation 

2.3.1 Splitting into sequences 

When working with time series for classification problems, especially when using LSTM 
networks, it is important to properly prepare the data. The choice of sequence length is 
especially important. Splitting into sequences of fixed length is performed both when using 
raw EEG records and when using the approach with preliminary calculation of informative 
features. The choice of sequence length is an important parameter, the optimal value of which 
depends on the nature of the data and the task. The choice of this parameter can be influenced 
by the presence of short-term or long-term dependencies in the data. When choosing the 
sequence length, we used an empirical approach, testing different values and then choosing 
the best value, which turned out to be seq_length = 16. 

2.3.2 Data resampling 

The dataset we used to train and test the model is highly imbalanced. The imbalance of this 
dataset stems from the nature of the data, as epileptic events in EEG recordings are quite rare, 
accounting for about 1% of the total number of samples. Many machine learning algorithms 
do not work well with imbalanced data. 

There are various methods to solve the problem of class imbalance. One of the widely 
used approaches to solve this problem is the method of resampling the training set. Another 
approach is to assign different weights to each of the classes. 

There are two main types of resampling: majority undersampling methods, which reduce 
the majority class to the size of the minority class, and oversampling methods, which enlarge 
the minority class to the size of the majority class. For example, [3] used undersampling, 
while [1] enlarged the minority class using synthetic segments generated by generative 
adversarial networks. The choice of an appropriate data resampling method has a significant 
impact on the classification result. For each specific dataset, it is advisable to determine the 
most suitable method through additional experiments. We chose the oversampling method 
“Oversample using Adaptive Synthetic (ADASYN)”, which creates synthetic samples for the 
smaller class based on the existing samples, thereby increasing the amount of data for the 
smaller class [13]. 

In addition to rebalancing, other data pre-preparation procedures were performed, such 
as cleaning data from missing values, scaling and normalization. 

2.4 Proposed model 

We used a Bidirectional Long Short-Term Memory (BiLSTM) neural network with three 
layers. BiLSTM processes sequences in both directions, which allows the model to better 
capture complex temporal dependencies in the data and improves the model's performance. 
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To reduce overfitting between BiLSTM layers, DROPOUT layers were used. DROPOUT 
is a regularization method that randomly sets some neurons to 0 during training. This 
technique prevents the model from overfitting to the training data. 

The ADAM optimizer was used as the optimizer. The hyperbolic tangent (tanh) was used 
as the activation function. 

The final (output) fully connected layer of DENSE uses a sigmoid activation function, 
which transforms the outputs of the biLSTM layer into probabilities of classes 0 or 1. The 
the binary cross-entropy was used as the loss function. This loss function is designed 
specifically for binary classification problems [14] and works with the probabilities that the 
model produces. 

The graphical diagram of the neural network model of binary classification is presented 
in Figure 2. 

 
 

 

Fig. 2 Proposed binary classification model based on BiLSTM 

2.4.1 Model training 

After data preprocessing and resampling, the model was trained on the resampled data, which 
was already a balanced sample. 

The presence of model overfitting was monitored using the training graph. The training 
graph, shown in Figure 3, shows the change in the sensitivity metric (recall) on the training 
and validation sets by epoch. This graph allows to get an idea of how the model learns and 
improves over time. 

 

 

Fig. 3 Graph of model training on training and validation samples. 
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3 Results 

Table 1 presents the results of computational experiments. As the main indicators for 
assessing the effectiveness of the model the metrics Sensitivity, Specificity, F1-Score and 
AUC-ROC was used. The choice of these metrics was dictated by the strong imbalance of 
the data set. Using these metrics allows to take into account the imbalance of classes. 

The Sensitivity metric (Recall, True Positive Rate (TPR)) evaluates the proportion of 
correctly predicted positive events among all real positive events and shows how correctly 
the model identifies positive samples. Sensitivity is calculated using the formula: 

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ൌ
்

ሺ்ାிேሻ


Specificity shows how often the classifier does not correctly classify objects into the 
positive class. Specificity is determined by the formula: 

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 ൌ
்ே

ሺிା்ேሻ
   

Precision shows what proportion of positive class predictions turned out to be correct and 
is calculated using the formula: 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൌ
்

ሺிା்ሻ
   

The False Positive Rate (FPR) is described by the formula: 

 𝐹𝑃𝑅 ൌ
ி

ሺிା்ேሻ
   

F1-Score conveys the balance of Sensitivity and Precision, being their harmonic mean. 
F1-Score is calculated using the formula: 

 𝐹1 ൌ
ଶ∗௦∗ௌ௦௧௩௧௬

௦ାௌ௦௧௩௧௬
,   

where: 
TP = True positives; 
TN = True negatives; 
FP = False positives; 
FN = False negatives. 
Specificity and F1-Score metrics are very important for assessing the clinical applicability 

of the method, since their value is affected by the number of false positive results. The 
clinician needs to review the events that the algorithm considers pathological. An excessive 
number of false positive results, even with a high level of Sensitivity, makes the method 
unsuitable for clinical use, since, given the class imbalance, in this case, clinicians have to 
review too many events labeled by the model as pathology, but in fact are not [15]. 

 

Fig. 4. ROC-curve and AUC for the proposed model. 
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ROC curve (Receiver Operating Characteristic) and AUC (Area Under the Curve) are 

important tools for assessing the quality of binary classification models. ROC curve shows 
how the TPR changes depending on the FPR at different classification thresholds. AUC 
evaluates the overall ability of the model to distinguish between classes, where a value of 1.0 
indicates a perfect model and 0.5 indicates a random model. 

Figure 4 shows the ROC curve and AUC of the model, allowing to judge how well the 
model distinguishes between classes. 

The values of these metrics were obtained on test data that was not involved in the training 
process. 

Table 1. Comparison of the performance of the proposed model with models of other authors tested 
on the TUH EEG dataset 

Author Classifier Task 
Specifi-

city 
Sensiti-

vity 
FPR F1 AUC 

X. Zhang at al. 
[16] 

CNN+Attenti
on 

M 97.4 88.1 - - 0.95 

D. M. Shama et 
al. [17] 

Transformer+
BiLSTM 

B 89.0 67.9 - - 0.901 

M. 
Golmohammadi 
at al. [18] 

Hybrid 
HMM/DL 

M, B - 95.11 - - - 

Y. Ma et al. [19] Transformer M - - - - 0.921 

S. Tang et al. 
[20] 

GNN M - - - 0.749 0.875 

Saab K. at al. [3] CNN - - - - - 0.88 

Y. Yang at al. 
[2] 

ConvLSTM В - - - - 0.84 

Asif at al. [4] CNN M - - - 0.94 - 

Ours biLSTM B 99.8 96.2 0.002 0.85 0.979 

4 Conclusion 

In this paper, a binary classification model of EEG signals based on the bidirectional LSTM 
neural network is proposed. As input data, the neural network receives informative features 
calculated by the sliding overlapping window method. Informative features include 
frequency, fractal, nonlinear and statistical characteristics of the EEG signal. Comparison of 
the obtained results with existing methods tested on the same TUH EEG dataset shows that 
the proposed model demonstrates high values of Specificity 99.8, Sensitivity 96.2, F1-score 
0.85 and AUC 0.98. The proposed model also has low level of FPR 0.002. 

 
The work was supported by the Ministry of Science and Higher Education of the Russian Federation 
(Grant No. 075-15-2022-1121). 
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