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Abstract. Because the banking business is growing, more people are 
seeking for bank loans, although banks can only lend to a certain number of 
applicants because they have a limited amount of assets to lend to. Hence, 
in order to save a lot of bank resources, the industry of banking is particularly 
concerned in developing ways to lower the risk element involved in selecting 
the safe applicant. These days, selecting the safe applicant requires a lot less 
work thanks to machine intelligence. In light of this, a new weights and 
structure determination (WASD) neuronet has been developed to address the 
two issues of credit approval mentioned above, as well as to manage its 
particular features. We improve the learning process of the WASD algorithm 
with a novel activation function for optimal adaptation to the credit approval 
model, motivated by the finding that WASD neuronets perform better than 
traditional back-propagation neuronets in terms of slow training speed and 
trapping in a local minima. An experimental study with an insurance 
company dataset demonstrates superior performance and adaptability to 
issues. 

1 Introduction 

Financial organizations such as banks have been making loans since the year 2000. Since 
credit risk arises mainly when borrowers are unwilling or unable to make payments, 
conducting a thorough background check on a customer before approving a loan is crucial to 
maintaining oneself in this line of work. Remember that there are a lot of non-performing 
loans in the economy since they reduce bank profits and deplete important resources, which 
makes it harder for banks to make new loans. Issues in the banking industry have the potential 
to quickly extend to other economic sectors, endangering jobs and economic expansion. 
Better methods for deciding whether or not to provide a loan must therefore be developed 
immediately.  

Today, the amount of work required to do such jobs is significantly reduced by developing 
technologies such as natural language processing and machine learning [1]. Neural networks 
(NNs), or neuronets, that are mainly employed for classification and regression problems, 
have been efficiently used in healthcare, engineering, economics, social science research, and 
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finance, among other fields. Measurements of solar systems and alloy behavior analysis are 
two common uses for them in engineering [2]. Likewise, NNs are widely utilized in medical 
diagnostics to identify several types of cancer, including lung and breast cancer [3]. On the 
other hand, NNs are mainly employed in the domains of economics and finance for time 
series forecasting, portfolio optimization, and macroeconomic factor prediction [4]. 
Additionally, NNs have been efficiently employed in social science research, usually for 
multiclass classification issues like occupational classification [5], teleworking assessment, 
and occupational mobility definition [6]. 

This work's main objective is to develop a model for loan acceptance prediction using 
innovative NNs augmented with cutting-edge methods. To do this, we will apply a feed-
forward NN (FNN) capable of handling binary classification problems. The popular back-
propagation method for training FNNs will be replaced with a weights and structure 
determination (WASD) training algorithm. The WASD strategy calculates the optimal set of 
weights directly utilizing the weights direct determination (WDD) algorithm, in contrast to 
the back-propagation technique, which iteratively alters the NN's topology. Ultimately, this 
keeps the system from being stuck in local minima, which lowers computing complexity [4]. 
In order to train a three-layer FNN for binary classification problems, we present a power 
Sigmoid Linear Unit (SiLU) activated WASD algorithm, called SWASD. The SWASD 
model outperforms some of the most advanced classification models in MATLAB's 
classification app in every way, according to experimental results using a dataset from 
insurance companies. 

The following succinctly describes the main concepts of this work: Using a publicly 
available dataset from insurance companies, the performance of a novel three-layer FNN 
based on the power SiLU activated WASD for binary classifications, called SWASD, is 
contrasted to some of the most advanced classifiers of MATLAB's classification app and the 
power Gaussian Error Linear Units WASD (GWASD) model from [5]. 

2 Methods: the SWASD neuronet model 

A three-layer FNN model trained using the SWASD technique is covered in this section. The 
model has 𝑚 inputs and 𝑛 hidden layer neurons. Specifically, Layer 1 is the input layer which 
receives and supplies the corresponding neuron in Layer 2 with equal weight 1 with the input 
values 𝐴ଵ,𝐴ଶ, … ,𝐴. Up to n active neurons may be present in Layer 2, which houses hidden 
layer neurons. Lastly, there is only one active neuron in Layer 3, which is the output layer. 
The weights 𝑤 , 𝑖 ൌ 1,2, … ,𝑛 െ 1,  in the neurons connecting Layer 2 and Layer 3 are 
obtained through the WDD process. Low hidden layer usage can be achieved by the NN 
model by the use of the SWASD algorithm. 

2.1 The WDD procedure for binary classification 

A key component of any WASD algorithm is the WDD process, which only takes real 
numbers as input data. Before being entered into the FNN, the data must additionally be 
normalized to a range of ሾെ0.5,െ0.25ሿ. In this way, the FNN manages over-fitting. If 
necessary, we can use the linear transformation in [5] to do it. Here, important theoretical 
underpinnings and research for the creation of the SWASD model are thoroughly justified. 
Think of the target vector 𝐷 ∈ ℝ  and the input 𝐴 ൌ ሾ𝐴ଵ,𝐴ଶ, … ,𝐴ሿ ∈ ℝൈ, where 𝑟 is the 
number of samples. Consider that 𝑈ሺ𝐴ଵ,𝐴ଶ, … ,𝐴ሻ ൌ 𝐷 due to an underlying relationship 
𝑈. To approximate 𝑈, the FNN employs the following element-wise power SiLU activation 
function: 

𝐺ሺ𝐴ሻ ൌ
⊙⋅⊙ಲ⊙

ଵା⊙ಲ⊙                    (1) 
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where ℎ is both the hidden layer neurons number with ℎ ൌ 0,1, … ,𝑛 െ 1, ℎ is the power 
value, and ሺ ሻ⊙ is the element-wise exponential. Note that (1) is a linear scheme of 𝑛 
activation functions 𝐺. For each activation 𝐺, let 𝑘 imply the image of 𝐴 under 𝐺. Hence, 
𝑘 ∈ ℝൈ for ℎ ൌ 0,1, … ,𝑛 െ 1. Also, let 𝑊 ൌ ሾ𝑤,𝑤ଵ, … ,𝑤ିଵሿ ∈ ℝ be a weights 
vector. A linear combination of all 𝑛 images may be represented as ∑ିଵ

ୀ 𝑘𝑤 ൌ 𝐷, where 
𝐾 ൌ ሾ𝑘,𝑘ଵ, … , 𝑘ିଵሿ ∈ ℝൈ and 𝐷 is the FNN's output. In order to convert 𝐷 to binary, 
an element-wise function 𝐵ሺ⋅ሻ is employed. Thus, the FNN's final output is  

 𝐵൫𝐷൯ ൌ ቊ
1 ,𝐷  െ0.375
0 ,𝐷 ൏ െ0.375

,    for  𝑖 ൌ 1,2, … , 𝑟.     (2) 

When a credit is granted, it is represented by 1, and when it is not, it is 0. It is important 
to take note of the next Theorem and Proposition concerning the NN's convergence. 
Theorem 1 Let 𝛩 be a nonnegative integer and 𝑈ሺ⋅ሻ be a target function. When 𝑈ሺ⋅ሻ has the 
ሺ𝛩  1ሻ-order continuous derivative inside the range ሾ𝛾ଵ, 𝛾ଶሿ, it holds:  

 𝑈ሺ𝜁ሻ ൌ 𝐵௵ሺ𝜁ሻ  𝐶௵ሺ𝜁ሻ,    𝜁 ∈ ሾ𝛾ଵ, 𝛾ଶሿ,    (3) 
where 𝐶ሺ𝜁ሻ is the error and 𝐵ሺ𝜁ሻ is the 𝛩-order Taylor approximation (TA) of 𝑈ሺ𝜁ሻ.   
Let 𝑈ሺఋሻሺ𝛽ሻ be the 𝛿-order derivative’s value of 𝑈ሺ𝑥ሻ at point 𝛽. The approximate 
representation of 𝑈ሺ𝜁ሻ is:  

 𝑈ሺ𝜁ሻ ൎ 𝐵ሺ𝜁ሻ ൌ ∑
ఋୀ

ሺഃሻሺఉሻ

ఋ!
ሺ𝜁 െ 𝛽ሻఋ ,    𝛽 ∈ ሾ𝛾ଵ, 𝛾ଶሿ.  (4) 

Proposition 1 The approximation of multivariable functions can be done using Theorem 
1. Suppose there are 𝑣 variables.  In an origin's neighborhood ሺ0, … ,0ሻ, let 𝑈ሺ𝜁ଵ, 𝜁ଶ, … , 𝜁௩ሻ 
be the target multivariable function with ሺ𝛩  1ሻ-order continuous partial derivatives. It 
follows the 𝛩-order TA 𝐵௵ሺ𝜁ଵ, 𝜁ଶ, … , 𝜁௩ሻ about the origin:  

 𝐵௵ሺ𝜁ଵ, 𝜁ଶ, … , 𝜁௩ሻ ൌ ∑௵
ୀ ∑ఋభା⋯ାఋೡୀ

భ⋯ೡ
ఋభ⋯ఋೡ

൬
డഃభశ⋯శഃೡሺ,⋯,ሻ

డభ
ഃభ⋯డೡ

ഃೡ
൰,  (5) 

where 𝛿ଵ,𝛿ଶ, … , 𝛿௩ are nonnegative integers.  
 

Following that, instead of applying the iterative weight training scheme seen in ordinary 
FNNs, the Θ-order TA FNN’s weights are immediately calculated using the WDD strategy 
explained next [7]:  

 𝑊 ൌ 𝐾ற𝐷,       (6) 
where ሺ ሻற implies pseudoinversion. 
 

2.2 The SWASD algorithm 

Since (6) handles the calculation of the optimal weights, the next step is to figure out the best 
size for the NN. Cross validation is used in conjunction with the SWASD algorithm to secure 
that the FNN generalizes beyond the training set. The SWASD algorithm may be explained 
in the 3 steps listed below. 

1) Assume the normalized input matrix 𝐴. The training and test sets are identified using 
a random 75%-25% split. From the training set, two sets of samples are again extracted: one 
for validation and one for model fitting. The user-specified parameter 𝑐 ∈ ሺ0,1ሿ ⊆ 𝑅 
deputizes the samples’ percentage to be allotted for model fitting. We identify the first 𝑆ଵ ൌ
𝑐 ⋅ 𝑆 samples as being utilized for model fitting and the last 𝑆ଶ ൌ 𝑆 െ 𝑆ଵ samples as 
undergoing validation, as the training set consists of 𝑆 ൌ 0,75 ⋅ 𝑟 samples. 

2) The SWASD algorithm starts with a power ℎ ൌ 0 and an empty matrix 𝐾. Then, when 
ℎ increases, it adds the matching columns 𝑘ାଵ to build 𝐾. As demonstrated in (6), the ideal 
weights are determined for every iteration in respect to the training set. On the validation set, 
the FNN's performance is assessed using the mean-absolute-error (MAE ൌ

ଵ

ௌమ
∑ௌమ
ୀଵ |𝐷 െ
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𝐷|). New columns are only kept in place if they have enhanced performance or reduced the 
MAE. This method is continued until ℎ reaches a predetermined threshold, that we set at 
ℎ୫ୟ୶ ൌ 59. 

3) Upon reaching ℎ୫ୟ୶, the training and validation sets are merged, and the terminal 
weights are calculated with respect to all samples (i.e., training and validation samples). 
In conclusion, the SWASD algorithm guarantees optimal weights and facilitates computation 
in subsequent runs by reducing the FNN's structure to the smallest dimension possible. The 
SWASD training method is a very successful process when combined with cross validation, 
as was previously described. 

3 Results and discussion 

The terminal step is to apply the FNN's final structure to the test set. Notably, the 13-variable 
credit approval dataset is available at https://www.kaggle.com/datasets/ninzaami/loan-
predication?resource=download. This dataset, which includes customer information from an 
online loan application form, was used to evaluate the NNs' performance. Since the WDD 
technique takes only input data in the shape of real numbers, the dataset's non-numerical data 
is converted into real numbers using the data preparation methodology described in [8]. 471 
numerical samples will be included in the dataset following data preprocessing. Additionally, 
the first 236 samples are used to create the training set, while the last 235 samples are used 
to create the testing set. The two subfigures in Fig. 1 display the test set classification results 
(right) and the training error path (left). 

 

Fig. 1. Results on the test set (right) and path of the training error (left) for the SWASD. 

To make pertinent inferences regarding the performance of the suggested SWASD model, 
a contrast to other high-performing classifiers is required. To do this, we chose the GWASD 
model in addition to three popular models from MATLAB's classification app: fine tree 
(FTree), 𝑘-nearest neighbors (KNN) and support vector machines (SVM). The performance 
metrics taken into consideration in our analysis are the MAE, precision, recal, accuracy, F-
score, true positive (TP), false negative (FN), false positive (FP) and true negative (TN). For 
further information and a detailed examination of these measures, see [9]. 

Fig. 1 (left) shows that SWASD needs less than 60 iterations to find the optimal structure 
of the FNN, which includes 8 hidden layer neurons. On the testing set, Fig. 1 (right) presents 
that SWASD has the best ratio correct/incorrect outcomes and KNN has the worst. The 
aggregate test results for the credit approval dataset are presented in Tab. 1. The SWASD 
distinguishes itself from the other classifiers with the highest scores for TP, Precision, F-
score and Accuracy, and the lowest MAE. In the TN, FN, and Recal scenarios, it is 
outperformed by Ftree, and in the FP scenario, by KNN. However, in contrast to the Ftree 
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model, exceptional achievement on some metrics does not seem to be accompanied with 
unjustifiably subpar performance on the other criteria. For this reason, the SWASD proves 
to be a reliable classifier that does exceptionally well on all parameters instead of just one. 

Table 1. Performance comparison between classifiers. 

Statistics SWASD GWASD KNN Ftree SVM 

MAE 0.2255 0.2297 0.2893 0.2723 0.2297 

FP 0.0243 0.0243 0.1646 0.1707 0.0243 

TP 0.9756 0.9756 0.8353 0.8292 0.9756 

TN 0.3098 0.2957 0.4225 0.4929 0.2957 

FN 0.6901 0.7042 0.5774 0.5070 0.7042 

Precision 0.9756 0.9756 0.8353 0.8292 0.9756 

Recal 0.5856 0.5807 0.5912 0.6205 0.5807 

F-score 0.7319 0.7281 0.6924 0.7098 0.7281 

Accuracy 0.7744 0.7702 0.7106 0.7276 0.7702 

 
To precisely ascertain whether it is feasible to make inferences regarding a FNN that is 

more suited for forecasting credit acceptance in the previously mentioned dataset, we 
incorporatea mid-𝑝-value McNemar test [10] (i.e., a statistical element) into the previous 
investigation. Whether 2 classifiers forecast the proper class with similar accuracy (i.e., the 
null hypothesis) or not (i.e., the alternative hypothesis) is the goal of this test. We looked at 
every possible combination of the SWASD and one of the other 4 models using the mid-p-
value McNemar test. The complete outcomes are presented in Tab. 2. At the 5% significant 
level, the null hypothesis is strongly rejected by the evidence, with the exception of the pair 
SWASD and KNN. The higher accuracy of SWASD is thus widely proven. The null 
hypothesis is not disproved in the pairs SWASD and SVM, SWASD and Ftree, and SWASD 
and GWASD. In other words, the accuracy of the SWASD, GWASD, Ftree, and SVM 
models is comparable. However, the data in Tab. 1 make it evident that the SWASD performs 
better overall than the GWASD, Ftree, and SVM. As a result, SWASD's superior 
performance is widely recognized. 

Table 2. Outcome McNemar's test. 

SWASD McNemar test 

vs. Null Hypothesis p-value 

GWASD Not Rejected 0.5000 

KNN Rejected 0.0090 

Ftree Not Rejected 0.0730 

SVM Not Rejected 0.5000 

4 Conclusion 

In this study, a SWASD NN is introduced to categorize credit approval. Using a freely 
accessible credit approval dataset, the SWASD exhibited either greater or very equivalent 
performance abilities contrasted to other well-known and successful classifiers. We have 
been able to demonstrate that the predictive accuracy of the KNN model and the SWASD 
model differs statistically significantly. This validates the results' credibility, which is further 
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supported by a McNemar test's findings. Nonetheless, the statistical test unequivocally 
demonstrates that the SWASD outperforms the GWASD, KNN, and SVM in terms of overall 
performance. As a result, we can confirm that the SWASD classifier is a reliable classifier 
capable of handling the credit approval classification problem. 

 
This work was supported by the Ministry of Science and Higher Education of the Russian Federation 
(Grant No. 075-15-2022-1121). 
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