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Abstract. The sharing economy has recently become a distinctive business 

model in China, offering advantages such as low prices and ease of use. 

Shared electric vehicles have also become an essential part of urban 

transportation. This research aims to assist electric vehicle providers in 

optimizing battery replacement schedules, with the objective of minimizing 

operating losses while meeting evening peak demand. Efficient resource 

allocation is crucial to remain competitive with the established public 

transport system. This study proposes a multi-armed bandit (MAB) 

approach to identify optimal periods for inspection and battery replacement 

in new city launches, even without prior knowledge of user behavior patterns. 

Modifications are made to the traditional MAB algorithm, incorporating the 

lower confidence bound (LCB), contextual features, kernelization, and the 

Gaussian Process (GP) to enhance the Upper Confidence Bound (UCB) 

MAB in solving this problem. Unlike deep learning techniques, the MAB 

model offers a lightweight, efficient, and easy-to-deploy solution that adapts 

to dynamic scenarios even with limited training data. Results indicate that 

this method performs stably in cumulative regret and in selecting the optimal 

choice within a short timeframe. Adaptable to seasonal and weekend 

fluctuations, this optimized approach shows potential for enhancing 

operational strategies not only in shared transportation but also across other 

sectors of the sharing economy. 

1 Introduction 

1.1 Background 

As the sharing economy develops, shared bicycles have become an essential mode of 

transportation in urban areas. In recent years, electronic bicycle sharing has become a new 

trend. Not only Chinese companies like Hellobike and Meituan deploy electronic bikes, but 

some Western companies like Uber have also started to provide electronic scooters. However, 

battery life and operating costs have been essential challenges in shared electric vehicle 

services. There are several ways to supply electricity nowadays, such as charging stations 

and changing cabinets. However, for small cities in China or cities that will soon need to 

introduce shared electric battery vehicles, this site-based battery change method has the 
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challenge of construction, time, and maintenance costs. Hence, for companies such as 

Hellobike, the primary method remains to deploy a team to change the batteries on-site. Since 

the evening peak is also the demand peak, suppliers will carry out power replacement and 

inspection before the evening peak to ensure supply. This method also has weaknesses; 

approximately 15 percent of users are affected by battery replacement. Because of this, the 

goal of this research is to find the best period for the battery change team. This could be 

challenging wildly when the demand for users fluctuates primarily due to the weather, 

weekends, and seasons. 

1.2 Related work 

Numerous studies have demonstrated GP-MAB's ability to perform well in some areas. For 

example, under non-stationary conditions, GP-MAB has stable performance, even if the 

reward function is nonlinear [1]. Different kernels can be used to deal with different problems, 

such as the periodic kernel [2].  Secondly, this model can make efficient selections under soft 

constraints [3]. These features of GP-MAB fit this paper’s scenario where the reward depends 

on a lot of factors. It could overcome weather and seasonal variations and significant usage 

differences between weekends and weekdays. 

GP-MAB has already been applied to many fields. The media industry uses it to 

personalize advertisement recommendations, which boosts the Click-Through rate (CTR) [4]. 

The medical industry also uses it to decide on personal treatment plans, for example, Diabetes 

Management [5]. Çelik et al. propose a GP-UCB variant with volatile arms that takes into 

account the patient's condition as well as acceptable treatments when recommending new 

therapies. The practice in many fields reflects the strong universality of this model. 

Research in the transportation field related to this study also uses GP-MAB. The daily 

periodicity of traffic conditions and the regularity of the seasons allow GP-MAB to use 

context to make better decisions. Cai et al. proposed Periodic-GP, which focuses on learning 

the stochastic periodic world by leveraging this seasonal law. As mentioned above, the 

periodic kernel is a strong tool in this situation [2].  

The present study on battery replacements focuses more on optimization than 

strengthening the ability to operate in different environments.  Zhou et al. use a Markov 

chain-based model to optimize battery exchange and rebalancing, emphasizing overall 

operational efficiency. Zhou et al. 's integrated model optimizes battery replacement and 

vehicle rebalancing based on historical data but is better suited for long-term planning. In 

contrast, the MAB model in this study performed well in real-time optimization, especially 

during periods of surging or uncertain demand [6]. This study provides a lightweight, flexible 

solution tailored to a specific time window using a MAB approach with GP and UCB. This 

can quickly adapt to changing requirements, making it ideal for new systems or data-sparse 

environments. 

1.3 Motivation and framework 

First of all, the static method of battery replacement cannot adapt to the environment change. 

Secondly, electronic bikes are a new traffic choice, but not much information is provided. 

That means the model needs a balance between exploration and exploitation, which is a 

perfect scenario for MAB. There are also some challenges, the reward distribution is dynamic 

and periodic. The problem also focuses more on loss than reward. 

This study aims to construct a GP contextual MAB model to overcome these difficulties. 

The main contribution is first to use the GP to model the battery demand and citizen's traffic 

style, making it contextual. Secondly, it designs a dynamic scheduling strategy based on the 

LCB model to balance short-term gains and long-term exploration. Lastly, the simulations 
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are used to test the performance of different kernels and compare the GP-MAB model to 

other methods. 

2 Methodology 

2.1 Overview 

The flowchart of the experimental structure is shown in Figure 1. All of the models in this 

study are MAB models. MAB is often used in situations where decisions are made with 

incomplete information. The goal is to maximize the cumulative reward in the long term. 

MAB can balance exploration and exploitation without prior knowledge. The basic form of 

MAB is to treat different schemes as arms, and then gradually explore the reward distribution 

of each arm. Every selection would update the distribution, which can help the model make 

the next decision. The model evaluation will be based on cumulative regret. MAB models 

are mostly used in recommendation systems, advertising, pricing strategy selection, etc. [7]. 

 
Fig. 1. Flowchart of the experiment with model and kernel comparisons 

2.2 Data processing 

2.2.1 Data import and conversion 

The Citi bike trip dataset from 2013 to 2017 is used. This dataset contains the date, start time, 

end time, duration, and site information of each trip. The date, month, and hour information 

are extracted for the time period analysis. 

2.2.2 Data cleaning 

Duplicate records were identified by matching identical station id, start time of trips and end 

time of trips, then they are removed. Outliers in trip durations were detected using the 

interquartile range (IQR) method, where trip durations exceeding 1.5 times the IQR were 

excluded. Missing values in trip duration were imputed using the median duration of trips at 

the respective station to preserve data consistency. 
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2.2.3 Data screening 

The four hours from 2 p.m. to 6 p.m. before the evening peak were selected. They are divided 

into four equal periods for data classification. 

2.2.4 Data conversion and encoding 

Calculate revenue using duration as the basis of the current duration pricing model and 

identify whether it is a weekend or not based on the date. The class feature 0,1 is given on 

weekends. The month feature retains its cyclic characteristics through polar coordinates. 

2.2.5 Sampling 

The study samples according to the month to simulate the seasons of a year, that is, 30 rounds 

are one month, and each round randomly samples a row of data in the month of any year. 

Twelve months is a cycle.  

2.2.6 Comparison 

The final dataset has been significantly condensed, reducing the data volume from 650,000 

records to a few thousand rows. This reduction was achieved through careful aggregation and 

cleaning processes. The resulting dataset is compact, focusing on rewards-related value such 

as the revenue of a specific hour, and total revenue. It also includes feature variables (month, 

weekend), making it highly efficient for downstream modeling tasks such as MAB 

algorithms according to Figure 2and Figure 3.  

 

 

Fig. 2. Table of the Raw Data 

 

Fig. 3. Table of the Processed Data 

2.3 Experimental setup and notation 

Here are the game settings and notations: 

- Arms are the four periods before the evening peak. 
- The instant optimal arm 𝑎̂𝑡 is the arm that has the lowest loss at round 𝑡. 
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- The chosen arm at round 𝑡 is 𝑎𝑡
∗. 

- The overall optimal arm 𝑎0. It is defined as the arm that has the lowest mean loss. 
- Every round, the game sets 15 percent of users to be denied by the system so that 
the model will get a loss, which is the sum of their revenue. 
- Regret is defined as the loss difference between 𝑎𝑡

∗ and 𝑎0. 
- Optimal Frequency is defined as the number of times that the model selects the 
instant optimal arms divided by the total round. 

2.4 Baseline model 

2.4.1 Thompson sampling 

Thompson Sampling (TS) is based on Bayesian probability. Ts samples the reward 

distribution for each arm and selects the arm with the highest sampling value. The specific 

steps are as follows: 

- Define Prior Distributions: For each arm 𝑎, establish a prior distribution, such as a Beta 

distribution Beta(𝛼𝑎 , 𝛽𝑎). 

- Sampling: Draw a sample value 𝜃𝑎 from the posterior distribution of each arm 𝑎. 

- Select Arm: Choose the arm 𝑎∗ with the highest sampled value 𝜃𝑎. 

- Observe and Update: Pull arm 𝑎∗ and get the reward 𝑟𝑎∗. Then it updates the posterior 

distribution of the arm 𝑎∗ based on the observed reward. 

2.4.2 UCB model 

Its core idea is to balance Exploration and Exploitation by calculating the UCB of each arm. 

Specifically, the model selects the arm with the highest UCB value at each round, as the 

equation (1): 

 

 

UCB𝑎(𝑡) = 𝜇̂𝑎(𝑡) + √
2ln𝑡

𝑁𝑎(𝑡)
 

 

(1) 

 

- 𝜇̂𝑎(𝑡) is the average reward estimation of arm 𝑎 at timestep 𝑡. 

- 𝑁𝑎(𝑡) is the count of selected times of arm 𝑎 at timestep 𝑡. 

- √
2ln𝑡

𝑁𝑎(𝑡)
 is the width of UCB 

The UCB model achieves the goal by selecting the arm with the highest UCB. Here, the 

study modified it to LCB, whose details are shown below. 

2.5 Contextual_GPR_LCB model 

This study proposes the Contextual_GPR_LCB model to address the Contextual Multi-

Armed Bandit problem. GPR is used to model the relationship between contextual features 

and expected losses for each arm. Since the main task here is to minimize the loss, the lower 

bound is used instead of the upper bound. 
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2.5.1 GPR basics and principle 

GPR is a non-parametric, Bayesian approach to regression. It operates by defining a 

distribution over functions directly rather than fitting specific model parameters. Given a set 

of input features or contexts 𝐂 and corresponding target values or losses 𝐲, GPR models the 

relationship as a joint Gaussian distribution. The goal of GPR is to predict the expected value 

and uncertainty (variance) for new contexts based on previously observed data, making it 

particularly suitable for problems involving uncertainty and exploration, such as multi-armed 

bandits. 

The key advantage of GPR lies in its flexibility in modeling non-linear relationships 

through the choice of kernel function. It provides a posterior distribution over possible 

functions, enabling predictions with not only a mean estimate but also a measure of 

uncertainty, denoted as 𝜇𝑎(𝐂) and 𝜎𝑎(𝐂), respectively [8]. 

2.5.2 Model architecture 

For every arm 𝑎 , the Contextual_GPR_LCB builds an independent GPR, allowing for 

tailored modeling based on specific contextual information so that this model could be easily 

optimized. The definition of the GPR is given in equations (2) and (3) [9,10]: 

 

 𝑓𝑎(𝐗𝑎) = 𝑦𝑎|𝑋𝑎 ∼ 𝒢𝒫(𝑚𝑎(𝐗𝑎), 𝑘𝑎(𝐗𝑎 , 𝐗𝑎′)) (2) 

 

Where 𝑚𝑎(𝐗𝑎) is the mean function, typically set to zero, and 𝑘𝑎(𝐗𝑎 , 𝐗𝑎′) is the kernel 

function, composed of a Constant Kernel 𝐶𝑎 and a Radial Basis Function (RBF) Kernel [11]: 

 

 
𝑘𝑎(𝐗𝑎 , 𝐗𝑎′) = 𝐶𝑎 ⋅ exp (−

∥ 𝐗𝑎 − 𝐗𝑎 ′ ∥2

2𝑙𝑎
2

) 
 

(3) 

 

Here, 𝐶𝑎 represents the variance parameter, and 𝑙𝑎 represents the length scale of the RBF 

kernel.𝑋𝑎 is the history context matrix of 𝑋𝑎 and 𝑋′𝑎 is the latest context. They all belong to 

arm 𝑎. 

The choice of kernel function is crucial in determining the performance of the GPR model. 

The study employs the RBF kernel, which is widely used due to its ability to capture non-

linear relationships between contexts. Different kernel functions can be chosen here to adapt 

different features such as periodic kernels, or combined kernels. 

The periodic kernel is a kernel function used in GPR to model periodic or repeating 

patterns in the data. It extends the RBF kernel by incorporating periodicity into the covariance 

structure, making it suitable for modeling phenomena that repeat over regular intervals, such 

as daily or seasonal trends. The study also implements it. The periodic kernel is defined in 

equation (4): 

 

 

𝑘(𝐂𝑖 , 𝐂𝑗) = exp

[
 
 
 
 

−

2 sin2 (
π|𝐂𝑖 − 𝐂𝑗|

𝑝
)

𝑙2

]
 
 
 
 

 

 

 

(4) 

 

where: 𝐂𝑖 and 𝐂𝑗 are two input context vectors, 𝑙 is the length scale hyperparameter that 

controls the smoothness of the function, 𝑝 is the period of the function. 𝑝 determines the 

interval at which the function repeats. sin2 (
𝜋|𝐂𝑖−𝐂𝑗|

𝑝
) captures the periodicity of the kernel by 
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measuring the sine of the distance between the input points, scaled by the period 𝑝[2]. 

Libraries like scikit-learn provide built-in mechanisms to optimize 𝑙 during model training. 

The periodic kernel ensures that the covariance between two points is a periodic function 

of their distance, making it particularly useful for tasks involving cyclical data, such as daily 

temperature patterns, seasonal trends in sales, or repeating user behavior. By adjusting the 

period 𝑝, the kernel can be tailored to specific periodic behaviors in the data. 

2.5.3 Arm selection 

At each round 𝑡, the context 𝐂𝑡 would be observed, and here is the process of GPR for each 

arm. 

- Prediction: the GPR predicts the expected loss 𝜇𝑎(𝐂𝑡) and the uncertainty 𝜎𝑎(𝐂𝑡). 

- The model would Compute the LCB by the formula given in equation (5). 

 

 𝐿𝐶𝐵𝑎(𝑡) = 𝜇𝑎(𝐂𝑡) − 𝛽 ⋅ 𝜎𝑎(𝐂𝑡) (5) 

 

Where 𝛽 is a hyperparameter. It can be modified to encourage the model to explore more 

or not. Here are some common values for 𝛽 . Setting 𝛽 = 1  can have a moderate 

exploration and setting  𝛽 = 2, 3 can make a more agressive exploration. 

- Select Arm: The Model chooses the arm with the smallest LCB given by equation (6). 

 

 𝑎∗ = argmin
𝑎

𝐿𝐶𝐵𝑎(𝑡) (6) 

 

2.5.4 Model update mechanism 

After selecting arm 𝑎∗, models will get a corresponding loss 𝑦𝑎∗, the model updates the GPR 

of 𝑎∗.The updating process is given by equation (7) and (8) 

 

 𝐗𝑎∗ ← 𝐗𝑎∗ ∪ 𝐂𝑡 

 

(7) 

 𝐲𝑎∗ ← 𝐲𝑎∗ ∪ 𝑦𝑎∗ (8) 

 

The context dataset 𝐗𝑎∗  and the loss dataset 𝐲𝑎∗  are updated to retrain the GPR. The 

model sets a limitation of the max train size since the complexity of the GP is 𝑂(𝑛3). 

2.6 Evaluation metrics 

The study employs two primary metrics to evaluate the performance of the multi-armed 

bandit algorithm: 

Cumulative Regret: This metric is defined as the total difference between the rewards 

obtained by the overall optimal arm and those obtained by the algorithm over all time steps. 

It measures how well the algorithm minimizes the loss relative to the best possible strategy. 

Lower cumulative regret signifies more efficient learning and decision-making. 

Frequency of Selecting the Optimal Arm: This metric calculates the proportion of times 

the algorithm selects the best-performing arm throughout the decision process. It reflects the 

algorithm’s ability to identify correctly and consistently prioritize the most rewarding arm, 

indicating its effectiveness in optimizing resource allocation. 
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3 Results and analysis 

According to the evaluation, three sets of comparisons are tested. Firstly, the comparison 

between the baseline model and the GP model is presented in Figure 4 and Figure 5.  

 

 

Fig. 4. Cumulative regret comparison (Baseline VS GP) 

 

Fig. 5. Frequency comparison (Baseline VS GP) 

The results indicate that the contextual GP model performs significantly better than the 

baseline model after a short-term exploration, in terms of both cumulative regret and 

frequency. 

Secondly, comparisons are made between different kernels. The plots for the periodic 

kernel and the RBF kernel are shown in Figure 6 and Figure 7. From the plot, the periodic 

kernel does not perform well on cumulative regret or frequency. It also takes four times 

longer to run. 
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Fig. 6. Frequency comparison (RBF VS Periodic) 

 

Fig. 7. Cumulative regret comparison (RBF VS Periodic) 

To test how will the model perform in the extreme condition, this study doubled the 

revenue of some months, so that the user behaviour fluctuates greatly. At the same time, the 

feature of every month exaggerates. In this case, model with GPR still take the lead with 

cumulative regret which is less than half of the baseline model’s. Due to the more obvious 

month features, periodic kernel makes a better performance than the RBF kernel. The flat 

line shows that GPR model is very robust and can adapt to fluctuating data and environment. 

The cumulative regret at a lower level showed that its ability to make relatively correct 

decisions under extreme circumstances. The results are showed in Figure 8 and Figure 9. 
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Fig. 8. Cumulative regret comparison in extreme conditions 

 

Fig. 9. Frequency comparison in extreme conditions 

In sum, every model except the Contextual_GPR_LCB model cannot do better than 

always choosing the overall optimal arm. The model built in this study also has a higher 

frequency than any other model, which means it dynamically chooses the instant optimal arm 

efficiently. After a short exploration of about a year, it began to outperform other models, 

choosing more right instant optimal than others. This proves that the Contextual_GPR_LCB 

model perfectly balances exploration and exploitation. It also does great in unstable 

environments with high adaptability and optimization ability. 

4 Limitations and future outlooks 

4.1 Limitations 

Firstly, the data sampling presents certain limitations. The sampling granularity is carried out 

by month, and it is not possible to smoothly show the climate change. There are also many 

features that can be observed but cannot be collected in this study, such as weather and 

holidays. This study was only able to take into account seasons and weekends. Secondly, for 

model building, the bound given to the kernel is not fit enough. In the process of study, 
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different experiments will have different bound ranges for the kernel. Sklearn keeps 

suggesting that a smaller bound value can be selected, but a smaller bound will take much 

longer to run the experiment. Sometimes, the best value is infinitely close to zero, so it is 

hard to tune. At the same time, the study did not set the number of GPR iterations, which 

may make the model trapped in the critical point while it is not at the extreme value. More 

iteration times can help the model get out of this situation. A study may find the best 

hyperparameters if better hardware support is available. 

4.2 Outlooks 

In terms of features, future research can integrate higher dimensional data. Now, the feature 

dimension is too small, so the RBF kernel is smoother and better than others. When many 

features are considered at the same time, processing different features with multi-kernels 

combined can have a better performance. In terms of model building, as said in the limitations, 

increasing iteration when computing power allows can help the model escape from non-

optimal solutions. There are also different feature processing methods to be tried, such as 

combining deep learning to process features to improve the adaptability and stability of 

decision-making. Last but not least, carrying out multi-objective optimization based on this 

research, adding user satisfaction, and so on to the optimization goal could improve the 

reward function and realize the balance between economic benefits and user feedback. 

5 Conclusion 

The results show that the context-based Contextual_GPR_LCB model can effectively 

identify and prioritize the low loss time period. This optimizes the battery replacement in 

cities that cannot maintain charging stations and in cities that are just beginning to deploy 

shared electric vehicles. The growth rate of cumulative regret slowed down significantly, 

even going to negative. The decision is much better than choosing the overall optimal arm 

for the whole time. The frequency also converges to a higher value than other models, 

indicating that the model gradually reached a better balance strategy. The gradual rise of the 

optimal arm selection frequency verifies the adaptability and accuracy of the algorithm in 

different contexts. Comprehensive evaluation shows the algorithm has good learning ability 

and resource optimization effect. This study addresses the emerging issue of battery 

replacement. Different from the research direction of how to set up the battery changing 

station and how to allocate and dispatch, this study focuses on the operation mode of most 

non-developed cities and gives the scheme. It proposes a new idea for the dynamic decision-

making of battery replacement problems and expands the practical application of the multi-

armed bandit’s algorithm in emerging scenarios. 
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