
Enhancing Distributed Machine Learning
through Data Shuffling: Techniques, Challenges,
and Implications

Zikai Zhang*

School of Electronic and Information Engineering, Beijing Jiaotong University, 100044, Beijing,

China

Abstract. In distributed machine learning, data shuffling is a crucial data

preprocessing technique that significantly impacts the efficiency and

performance of model training. As distributed machine learning scales

across multiple computing nodes, the ability to shuffle data effectively and

efficiently has become essential for achieving high-quality model

performance and minimizing communication costs. This paper

systematically explores various data shuffling methods, including random

shuffling, stratified shuffling, K-fold shuffling, and coded shuffling, each

with distinct advantages, limitations, and application scenarios. Random

shuffling is simple and fast but may lead to imbalanced class distributions,

while stratified shuffling maintains class proportions at the cost of increased

complexity. K-fold shuffling provides robust model evaluation through

multiple training-validation splits, though it is computationally demanding.

Coded shuffling, on the other hand, optimizes communication costs in

distributed settings but requires sophisticated encoding-decoding techniques.

The study also highlights the challenges associated with current shuffling

techniques, such as handling class imbalance, high computational

complexity, and adapting to dynamic, real-time data. This paper proposes

potential solutions to enhance the efficacy of data shuffling, including hybrid

methodologies, automated stratification processes, and optimized coding

strategies. This work aims to guide future research on data shuffling in

distributed machine learning environments, ultimately advancing model

robustness and generalization across complex real-world applications.

1 Introduction

In recent years, the explosive growth of data and advancements in computational power have

driven the development of distributed machine learning, a paradigm that distributes data and

computational tasks across multiple nodes to enhance training speed and model processing

capabilities [1]. In a distributed environment, efficient data transmission and processing are

critical, with data shuffling emerging as a major preprocessing technique. Data shuffling

rearranges the order of samples in a dataset, aiming to reduce dependencies between

* Corresponding author: 22251093@bjtu.edu.cn

ITM Web of Conferences 73, 03018 (2025) https://doi.org/10.1051/itmconf/20257303018

IWADI 2024

 © The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative
Commons Attribution License 4.0 (https://creativecommons.org/licenses/by/4.0/).

consecutive samples and prevent model overfitting, especially for time-series or imbalanced

data [2]. Moreover, data shuffling is essential for minimizing communication costs and

optimizing computing resource utilization, further boosting the efficiency of distributed

learning systems.

Currently, various data shuffling methods are applied in distributed machine learning,

each with unique advantages and limitations. Random shuffling, the most basic method, is

simple and quick but may lead to imbalanced class distributions that hinder model

performance. Stratified shuffling addresses this issue by maintaining class proportions,

although it requires more complex implementation [3]. K-fold shuffling enhances model

robustness through multiple training-validation cycles but incurs higher computational costs.

Coded shuffling reduces communication costs by transmitting coded combinations of data,

though it relies on sophisticated encoding-decoding techniques [4]. Despite these methods,

challenges remain, such as handling class imbalances, reducing computational complexity,

and adapting shuffling techniques to dynamic data environments.

This paper systematically reviews and evaluates data shuffling techniques within the

context of distributed machine learning. Specifically, the advantages, disadvantages, and

application scenarios of each method are explored, along with their effects on model

performance, training efficiency, and generalization ability. Limitations in existing

approaches, such as high communication costs and the complexity of implementation in

multi-node environments, are also identified. To address these challenges, potential solutions

are proposed, including hybrid shuffling approaches, automated stratification processes, and

optimized coding strategies. Through this analysis, the aim is to guide future research on

improving data shuffling for distributed machine learning and advancing model robustness

and adaptability for real-world applications.

2 Theoretical background

2.1 Definition of data shuffling

Most of the implementations define data shuffling as a process of randomizing the order of

samples for data in processing to avoid order dependencies between samples. It will improve

the generalization ability and train the effectiveness of a model. In other words, all data

shuffling purposes stand for putting all samples of the dataset in a random order, so while

training, a model could not learn from using the order of the samples. This randomization

will reduce overfitting risk. This ensures the model will generalize more appropriately on

different data distributions, specifically in tasks of imbalanced or time series data, where the

shuffling will also be very important.

To make readers better understand the concept of data shuffling and its actual operation,

it uses the Fisher-Yates shuffling algorithm as an example to illustrate the specific operation

process of random shuffling.

The Fisher-Yates shuffling algorithm is one of the most efficient randomization

algorithms for creating a random permutation of an array. Every idea in this algorithm is core

in performing the traversal from the back to the front of the array, swapping every element

progressively with the random elements including creating randomness. Pseudocode:

function fisherYatesShuffle(array):

 n = length(array)

 for i from n-1 down to 1:

 j = random integer from 0 to i

 swap array[i] with array[j]

ITM Web of Conferences 73, 03018 (2025) https://doi.org/10.1051/itmconf/20257303018

IWADI 2024

2

2.2 Role of data shuffling in machine learning

2.2.1 Improving model performance

Data shuffling reduces the over-reliance on the order in which data samples come in by

randomly altering their sequence. By doing so, the model would not see any difference in

which samples are fed during training, hence increasing the randomness in training.

According to a few studies, randomizing data can increase the performance of models when

undergoing training in datasets containing classes that have imbalanced data [5]. For example,

Shuffling in classification tasks can guarantee that the samples of each category are equal in

training and then learn the features of each category better.

2.2.2 Accelerated model training

Data shuffling can effectively reduce the time taken to transmit the data in a distributed

machine-learning environment. Further improvement in computing resource efficiency by

randomly shuffling the data is also possible. Especially in multi-node systems, it makes

mixed data distribution uniform and reduces nodes' communication latency. By incorporating

multicast technology with local decoding, data shuffling can go further in reducing

communication cost for the sake of efficient model training.

2.2.3 Promoting the generalization ability of the model

Data shuffle prevents overfitting of the model, because it randomizes the order of samples, it

presents the model with different data distributions and thus increases its adaptability to

unknown data. Different methods of partitioning data can also be used in the robustness of

the model regarding different distributions. A little bit of randomness makes the model much

more stable and reliable when faced with real-world data that is continuously changing.

2.2.4 Continuous updates and iterative training

Online data shuffling or performing incremental learning would quickly get the model

adapted to any new data that it will come across. The model becomes sensitive to newly

arriving information after regular shuffling and thus stays updated, hence improving its

continuous learning ability.

3 Analysis of data shuffling techniques

3.1 Common data shuffling methods

3.1.1 Random shuffling

Random shuffling represents the most general and common way of performing data shuffling.

It just rearranges the samples in a dataset randomly to avoid any ordering effects. It works

through the generation of a random permutation of the indices of the dataset [6]. This can be

done with the help of an algorithm like the Fisher-Yates shuffle.

ITM Web of Conferences 73, 03018 (2025) https://doi.org/10.1051/itmconf/20257303018

IWADI 2024

3

The obvious advantages of data shuffling are simplicity and effectiveness. It is rather

simple to implement, hence making it more comprehensible for most applications. Plus, it

really breaks the inherent order in a dataset, something quite crucial in training robust models.

However, in cases of imbalanced datasets, random shuffling might lead to a training or testing

set that suitably represents not all classes.

That would be appropriate in general datasets when there isn't a huge difference in class

imbalance, say, like regression tasks or balanced classification problems.

3.1.2 Stratified shuffling

Stratified shuffle stratifies the dataset based on the class labels into several strata and then

does the shuffling randomly within each stratum. In this way, it makes sure that in both

training and testing datasets, the proportion of each class is the same as in the original dataset.

Hence, this is useful in the case of imbalanced datasets.

Stratified shuffling can maintain the same distribution of classes in both training and test

sets. This may be rather important for many classification tasks, apart from decreasing

potential class imbalance biases in model performance. However, it is considerably more

complex to implement than random shuffling because of several additional steps that have to

be performed to preserve class proportions.

It acts as a perfect technique in the case of one-sided classification problems, in which

some classes have few samples compared to others. Examples include medical diagnosis or

fraud detection.

3.1.3 K-Fold shuffling

k-fold shuffling cross-validation is a process in which the dataset gets divided into k sets of

subsets. In that process, each fold acts like a validation set once and the remaining k-1 folds

have to participate in training. Before splitting, it does the random shuffling of the dataset.

K-fold shuffling provides a robust way of model performance evaluation, since it makes

use of a number of different training and validation sets. This can also reduce bias because

its result in different folds is averaged.

Some of the broad applications are model selection and performance evaluation, where

overfitting could be a possibility.

3.1.4 Code shuffling

In code shuffling, instead of transmitting each batch separately, the master node sends a

coded combination of batches. Using the locally cached data, the workers will then be able

to decode the needed batches. Coding techniques immensely reduced the communication

costs in distributed machine learning.

Although code shuffling does require some knowledge of coding techniques and may

bring a few overheads with regard to computational complexity, it reduces the amount of data

being sent across the network, hence speeding up training.

This is useful in federated learning or distributed systems where communications costs

are very high.

ITM Web of Conferences 73, 03018 (2025) https://doi.org/10.1051/itmconf/20257303018

IWADI 2024

4

3.2 Effects on performance and efficiency

A table intuitively shows the performance and efficiency to intuitively show the capability

of the different methods in four versions: model performance, training efficiency,

communication cost, and generalization ability.

Random shuffling might result in poor performance due to class imbalance problems,

which might include a few samples for particular classes [7]. However, stratified shuffling

keeps class proportions and, hence, it has improved performance for categories. K-fold

shuffling diminishes the bias based on multiple training and validation cycles. It usually

outputs high performance. The coded shuffling depends on effective decoding and can give

variable performance.

About training efficiency, random shuffling is the fastest and easiest to do; stratified

shuffling takes some more time, as the need for class representation has to be checked,

whereas k-fold shuffling is the slowest, since there are many training sessions involved,

raising computational costs. Coded shuffling enhances the efficiency in terms of reducing

data transmission time, particularly within a distributed environment.

Actually, random, stratified, and K-fold shuffling do not make much of a difference in

terms of communication cost since the methods operate on data processing. However, coded

shuffling indeed reduces the communication cost by packing multiple batches of data into a

single message effectively.

About generalization ability, random shuffle could face overfitting easily when the

dataset is small. Comparatively, stratified shuffle improves adaptability on unseen data. K-

fold shuffle gives more various training sets. In code shuffle, generalization ability depends

on diversity in the data and effectiveness in decoding.

As show in the table 1. The study of methods of data shuffling is essentially an indicator

of strengths and weaknesses. Each method has specific characteristics, which suit different

machine-learning scenarios. Understanding the difference is necessary so as to select the right

technique of shuffling. This structured overview outlines how each method affects

performance, efficiency, and communication cost for generalization, in a way to enable

informed decision-making in research and practice.

Table 1. Evaluation of Data Shuffling Methods.

Data shuffling

method

Random

 Shuffling

Stratified

Shuffling

K-Fold

Shuffling

Code Shuffling

Model

Performance

Medium may

be affected

by class

imbalance

High,

maintains

class

proportions

High, reduces

bias

Medium depends

on decoding

accuracy

Training

Efficiency

Fast, simple

to implement

Medium,

additional

time for

stratification

Slower, higher

computational

cost

High, reduced

communication

time

Communication

Cost

No

significant

impact

No significant

impact

No significant

impact

Low, optimizes

data transmission

Generalization

Ability

Medium,

potential

overfitting

High, strong

adaptability

High, provides

diverse training

sets

Medium depends

on data diversity

ITM Web of Conferences 73, 03018 (2025) https://doi.org/10.1051/itmconf/20257303018

IWADI 2024

5

4 Challenges in data shuffling

4.1 Limitations of current methods

Although widely used in machine learning, the current data shuffling methods still suffer

from several limitations. Many mixed washing methods are ineffective to handle imbalanced

data. Using random shuffling as an example, it may lead to a low proportion of samples of a

minority class in the training set that may result in a failure in properly learning these classes

by the model. That would not only affect the performance with respect to the model's

accuracy but also probably result in poor predictive performance for minority classes in

practical applications. It has been discovered that models tend to predict categories with

bigger sample sizes and ignore categories with smaller sample sizes when faced with

imbalanced data [8].

The second important issue is the complication in implementing a mixed washing

methodology. Such as hierarchical shuffling, which requires additional data processing to

keep the proportion of each category in the training and testing set constant. It not only

increases the complexity of implementation but also involves more computing resources and

time. During this process, hierarchical shuffling can be inefficient if the size of the dataset is

large, which may consume a higher amount of time to execute, increasing the overall

processing time [9].

The problem also lies in the high computational cost of K-fold mixed washing. Since

there is multiple training and validation, especially in cases with large datasets, the time and

resource consumption would surge, though it may provide a more comprehensive model

evaluation. This high cost prevents such real-time demanding application scenarios from

using K-fold mixed washing. Besides, though effective, encoding shuffle reduces the

communication cost with sophisticated techniques of encoding and decoding. The

introduction of such complexity raises the implementation difficulty and increases the

demands for computation resources potentially. If this decoding is not efficient enough, it

can offset the advantage brought by encoding aliasing, thus influencing overall performance

[10].

Finally, existing methods also seem not competent enough to handle datasets that change

dynamically. For instance, in cases of online learning or incremental learning, distribution

will shift, and there is no fast adaptation of the existing shuffling methods, which results in

the degradation of model learning performance. Probably, models could not make the most

of the previously learned outcomes when faced with new data, which is of utter relevance to

the long-term performance.

4.2 Potential solutions

Although widely used in machine learning, the current data shuffling methods still suffer

from several limitations. Many mixed washing methods are ineffective to handle imbalanced

data. Using random shuffling as an example, it may lead to a low proportion of samples of a

minority class in the training set that may result in a failure in properly learning these classes

by the model. That would not only affect the performance with respect to the model's

accuracy but also probably result in poor predictive performance for minority classes in

practical applications. It has been discovered that models tend to predict categories with

bigger sample sizes and ignore categories with smaller sample sizes when faced with

imbalanced data.

The second important issue is the complication in implementing a mixed washing

methodology. Such as hierarchical shuffling, which requires additional data processing to

ITM Web of Conferences 73, 03018 (2025) https://doi.org/10.1051/itmconf/20257303018

IWADI 2024

6

keep the proportion of each category in the training and testing set constant. It not only

increases the complexity of implementation but also involves more computing resources and

time. During this process, hierarchical shuffling can be inefficient if the size of the dataset is

large, which may consume a higher amount of time to execute, increasing the overall

processing time.

The problem also lies in the high computational cost of K-fold mixed washing. Since

there is multiple training and validation, especially in cases with large datasets, the time and

resource consumption would surge, though it may provide a more comprehensive model

evaluation. This high cost prevents such real-time demanding application scenarios from

using K-fold mixed washing. Besides, though effective, encoding shuffle reduces the

communication cost with sophisticated techniques of encoding and decoding. The

introduction of such complexity raises the implementation difficulty and increases the

demands for computation resources potentially. If this decoding is not efficient enough, it

can offset the advantage brought by encoding aliasing, thus influencing overall performance.

Finally, existing methods also seem not competent enough to handle datasets that change

dynamically. For instance, in cases of online learning or incremental learning, distribution

will shift, and there is no fast adaptation of the existing shuffling methods, which results in

the degradation of model learning performance. Probably, models could not make the most

of the previously learned outcomes when faced with new data, which is of utter relevance to

the long-term performance.

5 Conclusion

This paper provides a comprehensive overview of data shuffling techniques in distributed

machine learning, examining their effects on model performance, training efficiency,

communication costs, and generalization capabilities. By analyzing common methods such

as random, stratified, K-fold, and coded shuffling, the unique advantages and limitations each

technique brings to various application scenarios are highlighted. For instance, while random

shuffling offers simplicity and speed, it can lead to imbalanced class distributions. Stratified

shuffling maintains class balance but requires more complex implementation. K-fold

shuffling enables thorough model evaluation through repeated splits, though at a higher

computational cost, while coded shuffling reduces communication overhead but demands

intricate encoding and decoding processes. Additionally, current challenges associated with

these methods are addressed, including handling class imbalance, high computational costs,

and difficulties adapting to real-time data shifts. The analysis points to hybrid approaches,

automated stratification, and optimized coding as potential solutions to enhance shuffling

efficacy.

Future research should focus on refining these solutions and exploring adaptive shuffling

techniques that can respond dynamically to data changes, particularly in online and

incremental learning contexts. The development of automated and optimized shuffling

frameworks could enable more efficient data distribution in multi-node environments,

reducing computational complexity and communication costs. Moreover, integrating

machine learning-based techniques to adaptively manage shuffling strategies based on real-

time feedback could help balance model robustness, training efficiency, and generalization.

Ultimately, advancing data shuffling techniques will support the development of more

powerful and reliable distributed machine learning models, adaptable to the diverse and

dynamic nature of real-world applications.

ITM Web of Conferences 73, 03018 (2025) https://doi.org/10.1051/itmconf/20257303018

IWADI 2024

7

References

1. J. Konečny, H. B. McMahan, D. Ramage, P. Richtárik, Federated optimization:

Distributed optimization beyond the data center, Proc. 20th Int. Conf. Artif. Intell. Stat.

(AISTATS) 54, 1-10 (2016)

2. Y. Zhang, W. Li, J. Zhang, A survey of data shuffling methods in distributed machine

learning, J. Comput. Sci. Technol. 35(4), 685-703 (2020)

3. X. Zhu, Y. Zhang, Z. Zhao, J. Zuo, Radio frequency sensing based environmental

monitoring technology, Proc. Fourth Int. Workshop Pattern Recognit., Vol. 11198, pp.

187-191, SPIE (2019)

4. Y. Shen, Z. Zhang, Data shuffling in distributed learning: A survey, IEEE Trans.

Neural Netw. Learn. Syst. 30(3), 765-777 (2019)

5. D. Berthelot, N. Carlini, N. Papernot, I. Goodfellow, MixMatch: A holistic approach to

semi-supervised learning, Adv. Neural Inf. Process. Syst. 32 (2019)

6. Y. Zhang, H. Xu, X. Zhu, et al., Detection and Quantization Technique of Optical

Distributed Acoustic Coupling Based on φ-OTDR, J. Shanghai Jiaotong Univ. (Sci.)

25, 208–213 (2020)

7. Y. Liu, Z. Zhang, J. Wang, Addressing class imbalance in machine learning: A review,

J. Mach. Learn. Res. 22(1), 1-30 (2021)

8. Y. Zhang, W. Li, J. Zhang, Advanced data shuffling techniques for improving model

performance, Artif. Intell. Rev. 55(4), 2261-2280 (2022)

9. R. Wang, J. Zhu, S. Wang, T. Wang, J. Huang, X. Zhu, Multi-modal emotion

recognition using tensor decomposition fusion and self-supervised multi-tasking, Int. J.

Multimed. Inf. Retr. 13(4), 39 (2024)

10. H. Wang, Y. Chen, X. Liu, Efficient communication in distributed learning: A survey

on coded shuffling, IEEE Trans. Neural Netw. Learn. Syst. 34(2), 123-135 (2023)

ITM Web of Conferences 73, 03018 (2025) https://doi.org/10.1051/itmconf/20257303018

IWADI 2024

8

