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Abstract. Free Space Optics is a form of Optical Wireless 
communication technique that uses free space as a medium between 
transmitter and receveur. It is especially useful for short range point-
to-point communication links when a physical communication 
connections is not economical and feasible. In light of the benefits a 
FSO can offer, there has been a significant increase of interest in 
research community to develop efficient FSO transmitter and receveur 
system. This work is focused on the développent of efficient 
communication link for optical sources with very low Pulse-
Répétition-Frequency. The main contribution of this work is the 
développent of simple yet efficient alternatives to the traditional topics 
of FSO design like PPM Modulation, Synchronisation etc. 

1 Introduction  

Free Space Optical Communication 

Free space Optics (FSO) is an optical communication technique that uses light propagation 
th rough free space, namely vacuum, outer space, air etc, to transmit data Wireless. This 
méthode of communication is in contrast to the two traditionnel methods mentioned below 

1. Wireless – RF Communication 

2. Optical Fiber Communication(OFC) 

RF based communication uses electrical data signals modulated by RF frequency electro- 
magnetic waves and sent across the medium through antennas. There is no optics involved 
in this method. It is the choice of communication for cellular devices, mobile networks, 
wireless networks etc 
Although FSO is similar to OFC, the main difference lies in the medium that the light 
propagates. In OFC light is guided by the walls of the glass fiber, whereas in the FSO, the 
light is unbounded by the medium and hence the name free space optic High speeds, ase of 
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deployment,Low BER,Absence of sidelobes,License-free operation Immunity to RF 
interference,Reduced maintenance costs 
FSO Disadvantages, High Attenuation,Beamdispersion Interference from background light 
sources The above features make FSO the best choice for short-range point to point 
communication links Components of a FSO system are:Electronic Message Data 
Generator,A Base band modulator, Driver circuit which controls the opticalsource,Optical 
Source (Laser orLED),OpticalDetectors, Demodulator 
Scope of the Research Work :Designing a complete FSO system is a complicated process in 
terms of time and effort invested, especially the optical part. In this work, the focus is 
mainly on the design of the electrical aspects of the system, in such a way that pre-defined 
specifications of the optical front-end are assumed and the overall requirements from a 
communication system point of view are met.The main objective of this work is to design 
an efficient communication link with the below system specifications. 

1.1.1: Data rate – 20kbps or more 

 1.1.2: Bit-Error-Rate (BER) – 10
^-6 

orbetter 
 1.1.3: Laser Pulse Repetition Frequency (PRF) –10KHz 

The scope of the work is only the design of the electrical aspects of the communication link 
and the following procedure talk about the design process and its performance evaluation. 
2. Transmitter Design 

The process of arriving at the solution than the solution itself is the prime focus of this 
chapter.  

Any system design starts with the user requirements. Then a thorough scientific 
investigation is done on the requirements to come up with a feasible solution. 

Requirements: Data Rate – 20kbps or more,BER – 10^-6 orbetter, Laser PRF –
10KHz,Pulse Width – 20ns 

In order to meet the above requirements, we can think ourselves the below basic questions, 
the solutions of these will enable us to come up with a complete solution for the system. 
What modulation scheme to be used to meet the given data rate in a FSO environment? Is 
any channel coding technique is required to meet the given BER.How will the low laser 
PRF affect the aboveissues Each one of the above questions is answered separately in the 
below sections 

 

 

 
Fig.1: PPM Vs DPPM 

 
 
 
 

Now if we apply the regular PPM for the current requirements (assuming a 256-ary 
Modulation only for illustration purposes, the choice of optimum number of bits/symbol is 
discussed in ResultsChapter),Total Symbol time = 256*pulse_width = 256 * 20ns = 
5.1usData rate = 8/Tsymb = 1.6 Mbps >> 20kbps requirementFrom data rate point of view, 
the simple PPM method performs extremely well.ATsymb of 5.1us means, the laser should 
be capable of emitting two pulses in two PPM symbols duration, i.e. 2*5.1us = 10.2us. But 
it is clearly not possible as the laser can only emit pulses every 100us (because of Laser 
PRF of 10 KHz). Hence the simple PPM approach is not applicable to the currentscenario. 
 
Error Control Coding 
 
A forward error correction (FEC) based on convolution coding is presented. It is agreed that 
channel is prone to errors and the need is felt to accommodate a convolution encoder in the 
design. 
An FEC adds redundancy to the data bits enabling error correction capability at the receiver 
and thereby improving bit-error-rateperformance. 
It is suggested to use a ½ rate convolution encoder with a constraint length equal to 7, as 
shown in Fig 2. The generator polynomials used to derive its two bits A and B are 133 and 
171 (octal)respectively. 
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Figure 2: ½ rate Convolutional Encoder 
 
 

Interleaver 
Random burst errors are common in a FSO channel. So, it is suggested to use a simple 4x4 
row in, column out interleaver to combat the burst errors. 

 

 
 

 
 
 

This work borrows ideas from wireless LAN especially the Frame structure that is 
transmitted into the medium. 

 
Fig. 3: Proposed Frame Format 

 
 
 
 
 
 

    

____________ON/OFF_____________________PPM_____ 

SYNC 
(15 
ON 

OFF) 

SFD 
(2 ON 
OFF) 

LENGTH 
 
(2SYMB
OLS) 

CRC 
(2 

symbols
) 

DAT
A (2000 
BYTES) 

 

 

Sync field: It consistas of alternante ones and zeros. One represents pulse ON for a period 
of 20 ns while the zero represents pulse OFF period of100us.a. This field information is 
known by the receiver. When the receiver is turned on it first looks for this “1”, “0” 
repetition in the incoming signal to distinguish the desired signal from thenoise. Start of 
Frame Delimiter (SFD):a.It consists of a ON-OFF pattern that is dis-similar to the sync 
repetitionpattern.b.The main purpose of this is to let the receiver, once latched to the sync 
pattern, to adjust its local clock –frame synchronization. LengthField: a. This field consists 
of length information encoded by two PPMsymbols. This field is needed by the RX, as it 
needs to know how many data bytes to expe22ctin thepayload. Cyclic Redundancy Check 
(CRC) field: a. This field contains the 16 –CRC checksum which is modulated as two PPM 
symbolsfor error detection over the length field.a. Polynomialused: z16+ z15 + z2+1Data 
payload: a. This contains the actual data from the interleaver.b.It is modulated using PPM. 

TX Block Diagram 

 
Fig.4: TX Block Diagram 

 

4. Receiver Design 
Unlike the TX design, where it began with individuel blocks and finally ended with block 
diagram (Botttom –up approach), the RX design follows a reverse approach, i.e. it starts 
with the overall block diagram and ends with tweaking the performance of individual 
blocks (Top – Down approach). 
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Figure 5: RX Block Diagram 
 
Whenever the RX is turned on, it first calculates noise threshold for a couple of intervals. 
Once the noise threshold is calculated, it starts looking for the SYNC pattern in the 
incoming signal. Sync pattern, as discussed in previous Sec 3.5, is basically a sequence of 
alternating pulse ON and OFF repetition pattern. 
Once the RX finds the sync pattern, it latches on to the incoming signal until it encounters 
SFD field. SFD field is a unique pattern that is different from SYNC, so that the receiver 
when identifies this SFD pattern, knows that SYNC field has completed and after the SFD 
field it should expect the PPM Modulated datafields. 
 
5. Channel Estimation 

 
Figure 6: Gaussian Distribution. 

 
Because of the FSO channel properties, the signal might undergo dispersion. To overcome 
that, a channel estimation technique must be used. But the scope of the current work does 
not include that and the only channel effect that is included in the work is noise. 
PPM-Demapper 
After the RX has performed frame synchronization through SFD field, it then demodulates 

 

 

the sub-sequent fields through PPM Demodulation. 
The first field it encounters is two PPM symbols containing information of number of bytes 
in the payload. It then performs the 16 bit CRC on those fields locally and checks the value 
with the two PPM symbols of CRC field (PPM de-modulated) value that exists after the 
length field in the RX data. 
If the calculate CRC value does not match with the valued present in the received CRC 
field, then RX decides that the frame is corrupt and is discarded. If not, then it goes ahead 
decoding the sub-sequent field which contains the actual PPM modulated message. 
PPM Demodulation: 
PPM demodulation is very simple. It looks for the slot location where the maximum pulse 
amplitude is detected. If that maximum pulse amplitude is greater than the noise threshold 
then the slot number, where the maximum is observed is declared as the PPM de-mapped 
value. It exactly an inverse process of PPMmodulation. 

De-Interleaver 

Since an interleaver is used at the TX, it is only natural that an inverse operation needs to be 
performed at the RX. The interleaver used in the TX is a 4x4 Row-in-Column-Out block 
interleaver. To get the correct order of the data back, a row-in-column-out operation has to 
be performed at the RX. This turns out to be the same operation the intrleaver performed at 
the TX. Essentially the same Interleaver resource can be used even for de-interleaver. 

Viterbi Decode 

A Viterbi Decoder is needed at the RX as a convolutional encoder is used at the TX. The 
theory of Viterbi decoder is not covered here as it is exhaustively discussed in the literature. 
Here only the specifications of the decoder are discussed.A hard-decision Viterbi decoder 
with a trace back length of 8, that matches with the polynomials used in the convolutional 
encoder is designed. The output of the decoder is the final message bits. From the above 
discussions, it is clear that the design of the RX is completely driven by the choices made in 
the TX design. 

From the discussion of the earlier chapter, it is clear that the TX signal is mostly sparse. 
ON pulse duration is of only 2 samples, while OFF pulse duration is of approximately 
10,000 samples. Hence if we calculate variance at any random time, it gives us a close 
estimate of the noise power spectral density. 

 
The value of Nused in the work is 256. 

 
It is a well-known fact that for a Gaussian distribution of mean µ and standard deviation σ, 
the probability of the sample value exceeding |3 σ| is less than 0.1%, see figure 6. 
 

 
6. Results and Discussions  
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Optimum number of bits per PPM symbol 
 The modulation scheme employed in this design is discussed in Sec 3.2. But it didn’t give 

any explantation on the optimum number of bits to be used per symbol. 
Here Optimum means achevions high data rate 

 
Fig.7: Data Rate Vs. No. of Bits/Symb 

 
From the above figure, the following observations can be made,As overall slot duration 
decreases, data rate increases and its obvious because the lesser the symbol duration the 
better the datarate.For a given slot duration, data rate increases as the number of bits per 
symbol,increasesuntilacertainandthendecreases,becauseinitiallywaitslotisgreaterthantheactu
al PPM symbol, but as we keep on increasing the number of bits per symbol, the 
contribution of PPM symbol time to the effective time becomes comparable and it yields 
diminishingreturns.For a slot duration of 100ns, the maximum data rate of 63.6kbps occurs 
at 8-bits per symbol which coincidentally matches with the notion of bytes. Hence the 
choice of 8-bits per symbol and PPM slot duration of 100ns is used in the current design. 
 
Effect of Preamble on Effective DataRate 
 
In the earlier section, the data rate calculation is purely based on the actual payload. But as 
mentioned in Sec 3.5, there is a frame format and actual data is only one field among many. 
Hence the effective data calculation should account for the entire preamble overhead. 
Obviously with 8bits/symb and slot time of 100ns, the effective data rate will be less than 
the 63.6kbps. In fact it is a function of the number of bytes of the payload. 
This analysis is presented in the figure 8 below 

 

 

 
Figure 8: Effect of Preamble Overhead 

 
From the above fig 8, the following observations can be made.The effective data rate (red 
colour line) increases steadily with the size of payload and it reaches 63kbps asymptotically 
for bigpayloadsPreamble Overhead percentage (blue line), decreases once again as the 
payload size increasesFor around 2000 bytes of data, the overall time taken is 
approximately only 260ms. 

6.1. System Performance 
In this section, the simulation result of the end-to-end communication link is presented. A 
BER Vs Es/No analysis is presented in figure 9 

 

Fig 9: BER Vs Es/No of the PPM Modem 

BER of 10^-6 is achieved at Es/No of above14dB. 

Note: Eb/No (dB) = Es/No (dB) - 10log(bits per symbol) 

Eb/No (dB) = Es/No (dB) – 9 
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7. Conclusions 

The research work started with a modest of objective designing a FSO communication link 
that achieves a data rate of more than 20kbps with a BER performance of 10^-6. However 
the laser source with a pulse repetition interval of 100us posed a serious limitation on data 
rate to 312  bps. 

To overcome that limitation, we proposed a modified PPM technique that meets the data 
rate requirement. The problem of synchronization came as a by-product of the PPM 
scheme. 

To overcome that, we proposed an extended slot duration technique that is very simple to 
implement in hardware when compared to the traditional synchronization techniques.  
Although the proposed technique slightly deteriorates the data rate, it is right as it meets the 
project data rate requirements. 

An exhaustive mat lab simulation confirmed the proposed design indeed met the project 
requirements. 

As a future work, I intend to port this algorithm on an FPGA and test the performance in 
the real world. 
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7. Conclusions 

The research work started with a modest of objective designing a FSO communication link 
that achieves a data rate of more than 20kbps with a BER performance of 10^-6. However 
the laser source with a pulse repetition interval of 100us posed a serious limitation on data 
rate to 312  bps. 

To overcome that limitation, we proposed a modified PPM technique that meets the data 
rate requirement. The problem of synchronization came as a by-product of the PPM 
scheme. 

To overcome that, we proposed an extended slot duration technique that is very simple to 
implement in hardware when compared to the traditional synchronization techniques.  
Although the proposed technique slightly deteriorates the data rate, it is right as it meets the 
project data rate requirements. 

An exhaustive mat lab simulation confirmed the proposed design indeed met the project 
requirements. 

As a future work, I intend to port this algorithm on an FPGA and test the performance in 
the real world. 
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