Isomorphism of Matrix Algebras over Cuntz Algebras

Afif Humam^{1,*}, Janny Lindiarni^{1,**}, Reinhart Gunadi^{1,***}, and Wono Setya Budhi^{1,***}

¹Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung 40132, Indonesia

Abstract. Starting with a Cuntz algebra O_n constructed by n isometries, we discuss a C^* -algebra consisting of elements of a fixed size k square matrix, where the entries of matrix are from the Cuntz algebra O_n . It is surprising to find that if k divides n, the resulting C^* -algebra of matrix is isomorphic to the Cuntz algebra O_n . We extend this result to cases where k is larger than n, showing that the same conclusion holds provided that every prime factor of k divides n.

1 Introduction

Suppose we have a Hilbert space H over the complex numbers \mathbb{C} . The set B(H) of all bounded linear operators on H forms a normed vector space over \mathbb{C} . Additionally, we can define a multiplication operation on this set through the composition of two operators. With these two operations, addition and multiplication, the set B(H) acquires an algebraic structure known as a normed algebra.

As an algebra, B(H) doesn't form a field, which is different with the set of complex or real numbers. Nevertheless, similar to forming matrices with real or complex number elements, we can consider matrices whose elements come from a subalgebra in B(H).

We need a structure that is more specific than just a subalgebra, as it also requires an involution operation. In B(H), this involution is represented by the adjoint operator. We will consider a subalgebra constructed from n isometries that is closed under involution. This is known as the Cuntz algebra (see [1]).

The Cuntz algebra has emerged as a fascinating topic in the field of operator algebras, attracting significant attention from researchers in recent years. Several studies have explored its diverse properties and applications, contributing to a deeper understanding of its structure and significance. For instance, [2] investigated the classification of near-group categories using a Cuntz algebra approach, providing a novel perspective on its categorical framework. [3] examined representations of Cuntz algebras associated with random walks on graphs, establishing connections between operator algebras and probability theory. [4, 5] made substantial contributions by studying extension algebras of Cuntz algebras, revealing their intricate algebraic properties and extensions. [6] analyzed the conditions under which the Cuntz–Krieger algebra of a higher-rank graph becomes approximately finite-dimensional, bridging

^{*}e-mail: afif.humam@itb.ac.id

^{**}e-mail: janny@itb.ac.id

^{***}e-mail: reinhart.gunadi@gmail.com

^{****}e-mail: wonosb@itb.ac.id

graph theory and operator algebras. Additionally, [7] explored symmetry properties in the Cuntz algebra on two generators, while [8] investigated branching laws for endomorphisms of fermions and their relationship with the Cuntz algebra O_2 . These studies collectively highlight the versatility and richness of Cuntz algebras, underscoring their importance in both theoretical and applied mathematics.

In this paper, we examine a C^* -algebra constructed from $k \times k$ matrices whose entries are elements of the Cuntz algebra O_n . We show that when k divides n, the resulting algebra exhibits a structure similar to the Cuntz algebra itself. Moreover, we extend this result by demonstrating that the matrix size k can be **larger** than n, provided that all prime factors of k divide n (see Corollary 6). This finding broadens the known constraints on k and refines the relationship between matrix algebras and Cuntz algebras, contrasting with the classical case of matrices over the complex numbers.

2 Discussion

We consider an abstraction of the structure of the set of all bounded linear operators on a Hilbert space H. A set $\mathfrak B$ is called an algebra over the complex numbers $\mathbb C$ if $\mathfrak B$ is a vector space over $\mathbb C$, and it is equipped with an associative multiplication operation, i.e., for every $X, Y \in \mathfrak B$, then $XY \in \mathfrak B$.

As in B(H), the algebra $\mathfrak B$ can also be equipped with a norm $\|\cdot\|$, which is a function from $\mathfrak B$ to the real numbers satisfying the following properties:

1. Non-negativity and Definiteness: For every $X \in \mathfrak{B}$,

$$||X|| \ge 0$$
, and $||X|| = 0$ if and only if $X = 0$.

2. Scalar Multiplication: For every $\alpha \in \mathbb{C}$ and $X \in \mathfrak{B}$,

$$||\alpha X|| = |\alpha|||X||.$$

3. Subadditivity (Triangle Inequality): For every $X, Y \in \mathfrak{B}$,

$$||X + Y|| \le ||X|| + ||Y||.$$

4. Submultiplicativity: For every $X, Y \in \mathfrak{B}$,

$$||XY|| \le ||X||||Y||.$$

If the norm is complete, meaning that every Cauchy sequence in \mathfrak{B} converges, then \mathfrak{B} is called a **Banach algebra**. We also define an **involution** on \mathfrak{B} , which is a map $X \mapsto X^*$ for $X \in \mathfrak{B}$. This involution is compatible with the algebraic structure of \mathfrak{B} and satisfies the following properties:

1. **Involution Property**: For every $X \in \mathfrak{B}$,

$$(X^*)^* = X.$$

2. **Antilinearity**: For every $X, Y \in \mathfrak{B}$ and every $\alpha \in \mathbb{C}$,

$$(\alpha X + Y)^* = \overline{\alpha} X^* + Y^*.$$

3. Multiplication Compatibility: For every $X, Y \in \mathfrak{B}$,

$$(XY)^* = Y^*X^*.$$

A C^* -algebra B is defined as a Banach algebra with an involution * that satisfies

$$||X^*X|| = ||X||^2$$
 for all $X \in B$.

If the C^* -algebra has a multiplicative identity element, it is called a **unital** C^* -algebra.

In the context of operators, we recognize an isometry S in B(H) as an operator that satisfies ||Sx|| = ||x|| for every $x \in H$. This condition can be expressed as $S^*S = I$. However, in infinite dimensions, there exist isometries S such that SS^* is merely a projection. Following Cuntz [1], we construct a subalgebra generated by a set of isometries with specific properties.

Definition 1. For natural number $n \ge 2$, the **Cuntz algebra** O_n is the C^* -algebra generated by isometries S_1, \ldots, S_n satisfying the relations:

$$\sum_{i=1}^{n} S_{i} S_{i}^{*} = I, \quad and \quad S_{i}^{*} S_{j} = \delta_{ij} I, \tag{1}$$

where δ_{ij} is the Kronecker delta, and I is the multiplicative identity element.

In some literature ([9–11]), the Cuntz algebra is described as a universal algebra. However, this paper does not directly use that universal property.

The Cuntz algebra O_n is unique up to isomorphism. Consequently, if a C^* -algebra $\mathfrak A$ contains elements t_1, \ldots, t_n that meet the condition in (1), then the *-homomorphism $\varphi: O_n \to \mathfrak A$ that satisfies $\varphi(s_1) = t_1, \ldots, \varphi(s_n) = t_n$ is injective. This implies that the C^* -subalgebra of $\mathfrak A$ generated by t_1, \ldots, t_n is isomorphic to O_n .

Next, we construct a C^* -algebra where the elements are matrices whose entries belong to the Cuntz algebra O_n .

Definition 2. Let k be a natural number. The matrix algebra of k-square matrix over Cuntz Algebra O_n is defined by the set

$$M_k(O_n) = \{T \mid T \text{ is a } k \times k \text{ matrix with elements in } O_n.\}$$

As an example, one of the elements in $M_2(O_3)$ is

$$T = \begin{bmatrix} S_1 - 2iS_2S_1^* & 4S_2S_1^* \\ S_1 & S_3 + S_1^2 \end{bmatrix}$$

with $\{S_1, S_2, S_3\}$ being the generators of O_3 as in (1). Note that we can express T as follows:

$$T = S_1 \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} + (S_2 S_1^*) \begin{bmatrix} -2i & 4 \\ 0 & 0 \end{bmatrix} + (S_3 + S_1^2) \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}.$$

Each element in the summation can be viewed as $A \otimes B$, which is the tensor product of an element A in $M_2(\mathbb{C})$ (a 2×2 matrix) and B an element in O_3 . Using the tensor product notation, the element above can be written as:

$$T = (A_1 \otimes B_1) + (A_2 \otimes B_2) + (A_3 \otimes B_3)$$

with
$$A_1 = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$$
, $A_2 = \begin{bmatrix} -2i & 4 \\ 0 & 0 \end{bmatrix}$, $A_3 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \in M_2(\mathbb{C})$ and $B_1 = S_1$, $B_2 = S_2S_1^*$, $B_3 = S_2 + S_2^* \in Q_2$

In general, we can conclude the following property:

Proposition 3. Every $T \in M_k(O_n)$ can be expressed as

$$T = \sum_{i=1}^{N} A_i \otimes B_i, \tag{2}$$

for some positive integer N, where $A_i \in M_k(\mathbb{C})$ and $B_i \in O_n$ for all i = 1, ..., N.

Proof. Let $T \in M_k(O_n)$. Then there exist elements $t_{ij} \in O_n$ for $1 \le i, j \le k$ such that

$$T = \begin{bmatrix} t_{11} & \cdots & t_{1k} \\ \vdots & \ddots & \vdots \\ t_{k1} & \cdots & t_{kk} \end{bmatrix} = \sum_{i=1}^k \sum_{j=1}^k t_{ij} E_{ij} = \sum_{i=1}^k \sum_{j=1}^k E_{ij} \otimes t_{ij},$$

where E_{ij} is the elementary matrix that has 1 in the (i, j)-th entry and zeros elsewhere.

The first step is to prove that $M_k(O_n)$ is also a C^* -algebra. It is straightforward to see that $M_k(O_n)$ forms a vector space over the field \mathbb{C} . The multiplication operation in $M_k(O_n)$ is defined using the standard matrix multiplication. For $A, C \in M_k(\mathbb{C})$ and $B, D \in O_n$, the multiplication operation is given by

$$(A \otimes B)(C \otimes D) = (AC) \otimes (BD).$$

where AC denotes the usual matrix multiplication, and BD is the product in O_n . Next, for every $A \in M_k(\mathbb{C})$ and $B \in O_n$, the *involution* of an element $T = A \otimes B \in M_k(O_n)$ is defined as

$$T^* = A^* \otimes B^*$$
.

where A^* denotes the conjugate transpose of the complex matrix A, and B^* is the involution in O_n . Furthermore, the norm of an element in $M_k(O_n)$ is defined analogously to the operator norm in a Hilbert space, given by

$$\left\| \begin{bmatrix} t_{11} & \cdots & t_{1k} \\ \vdots & \ddots & \vdots \\ t_{k1} & \cdots & t_{kk} \end{bmatrix} \right\| = \left(\sup_{\sum_{i=1}^{k} \|x_{j}\|^{2} = 1} \sum_{i=1}^{k} \left\| \sum_{j=1}^{k} t_{ij} x_{j} \right\|^{2} \right)^{1/2},$$

where $t_{ij}, x_j \in O_n$ for $1 \le i, j \le k$ (see [12], Appendix B).

Given that $M_k(O_n)$ is a C^* -algebra, we choose a generating set for it, though not necessarily a minimal one.

Lemma 4. Let n and k be natural numbers, and let S_1, S_2, \ldots, S_n be the isometries that generate the Cuntz algebra O_n , i.e., the isometries satisfying (1). The set

$$\{E_{ij} \otimes S_l \mid 1 \le i, j \le k, \ 1 \le l \le n\}$$
 (3)

generates the C^* -algebra $M_k(O_n)$.

Proof. Let $\mathfrak A$ be the C^* -subalgebra generated by the set (3). Then, for $1 \le i, j \le k$ and $1 \le l \le n$, we have

$$E_{i,i} \otimes S_{i}^{*} = (E_{i,i} \otimes S_{i})^{*} \in \mathfrak{A}.$$

This implies that

$$E_{ij} \otimes I_{O_n} = \sum_{p=1}^n E_{ij} \otimes S_p S_p^* = \sum_{p=1}^n (E_{ii} \otimes S_p)(E_{ij} \otimes S_p^*) \in \mathfrak{A}.$$

Meanwhile, since $\{E_{11} \otimes S_l\}_{l=1}^n \subset \mathfrak{A}$ and $\{S_l\}_{l=1}^n$ generates O_n , it follows that for every $t \in O_n$,

$$E_{11} \otimes t \in \mathfrak{A}$$
.

Therefore, in view of the proof of Proposition 3, for every $T \in M_k(O_n)$, we have

$$T = \sum_{i=1}^k \sum_{j=1}^k E_{ij} \otimes t_{ij} = \sum_{i=1}^k \sum_{j=1}^k (E_{i1} \otimes I_{O_n})(E_{11} \otimes t_{ij})(E_{1j} \otimes I_{O_n}) \in \mathfrak{A}.$$

Thus, the proof is complete.

Surprisingly, $M_k(O_n)$ is isomorphic to O_n itself as long as k divides n.

Theorem 5. Let n, k be natural numbers. If k divides n, then $M_k(O_n)$ is isomorphic to O_n .

Proof. First, we will construct the generator of $M_k(O_n)$. For $0 \le j < n/k$ and $1 \le i \le k$, we define matrices

$$T_{kj+i} = \sum_{l=1}^{k} E_{il} \otimes S_{kj+l}$$

where E_{il} is a matrix unit, and S_{kj+l} is the element in equation (1). It will be shown that

$$\sum_{i=1}^{k} \sum_{i=1}^{n/k} T_{kj+i} T_{kj+i}^* = I.$$

To do this, we compute:

$$\sum_{i=1}^{k} \sum_{j=1}^{n/k} T_{kj+i} T_{kj+i}^* = \sum_{i=1}^{k} \sum_{j=1}^{n/k} \left(\sum_{l=1}^{k} E_{il} \otimes S_{kj+l} \right) \left(\sum_{l=1}^{k} E_{il} \otimes S_{kj+l} \right)^*$$

$$= \sum_{i=1}^{k} \sum_{j=1}^{n/k} \left(\sum_{l=1}^{k} E_{il} \otimes S_{kj+l} \right) \left(\sum_{m=1}^{k} E_{im}^* \otimes S_{kj+m}^* \right)$$

$$= \sum_{i=1}^{k} \sum_{j=1}^{n/k} \sum_{l=1}^{k} \sum_{m=1}^{k} (E_{il} E_{im}^*) \otimes \left(S_{kj+l} S_{kj+m}^* \right)$$

$$= \sum_{i=1}^{k} E_{ii} \otimes \left(\sum_{j=1}^{n/k} \sum_{l=1}^{k} S_{kj+l} S_{kj+l}^* \right)$$

$$= I_{M_k(\mathbb{C})} \otimes I_{O_n} = I_{M_k(O_n)}.$$

Next, we show that T_{kj+i} is an isometry. To do this, we compute:

$$\begin{split} T_{kj+i}^* T_{kj+i} &= \left(\sum_{l=1}^k E_{il}^* \otimes S_{kj+l}^* \right) \left(\sum_{l=1}^k E_{il} \otimes S_{kj+l} \right) \\ &= \sum_{l=1}^k E_{ll} \otimes S_{kj+l}^* S_{kj+l} \\ &= \sum_{l=1}^k E_{ll} \otimes I_{O_n} = I_{M_k(\mathbb{C})} \otimes I_{O_n} = I_{M_k(O_n)}. \end{split}$$

At this point, we have shown that the C^* -subalgebra of $M_k(O_n)$ generated by $\{T_l\}_{l=1}^n$ is isomorphic to the Cuntz algebra O_n . Now, we only need to show that $\{T_l\}_{l=1}^n$ spans the entire $M_k(O_n)$. To do this, we demonstrate that each element in the generating set (3) can be constructed using $\{T_l\}_{l=1}^n$. The key result needed for this final step is the following expression:

$$\sum_{j=1}^{n/k} T_{kj+p} T_{kj+q}^* = \sum_{j=1}^{n/k} \left(\sum_{l=1}^k E_{pl} \otimes S_{kj+l} \right) \left(\sum_{l=1}^k E_{ql} \otimes S_{kj+l} \right)^*$$

$$= \sum_{j=1}^{n/k} \left(\sum_{l=1}^k E_{pl} \otimes S_{kj+l} \right) \left(\sum_{m=1}^k E_{qm}^* \otimes S_{kj+m}^* \right)$$

Using the multiplication operation, we obtain:

$$\begin{split} \sum_{j=1}^{n/k} T_{kj+p} T_{kj+q}^* &= \sum_{j=1}^{n/k} \sum_{l=1}^k \sum_{m=1}^k E_{pl} E_{mq} \otimes (S_{kj+l} S_{kj+m}^*) \\ &= \sum_{j=1}^{n/k} \sum_{l=1}^k E_{pq} \otimes \left(S_{kj+l} S_{kj+l}^* \right) \\ &= E_{pq} \otimes \left(\sum_{j=1}^{n/k} \sum_{l=1}^k S_{kj+l} S_{kj+l}^* \right) \\ &= E_{pq} \otimes I_{O_n}. \end{split}$$

Thus, for any $1 \le p, q, i \le k$ and $0 \le m \le n/k$, we have

$$E_{pq} \otimes S_{km+i} = \sum_{l=1}^{k} \left(E_{pi} E_{il} E_{iq} \right) \otimes \left(I_{O_n} S_{km+l} I_{O_n} \right)$$

$$= \left(E_{pi} \otimes I_{O_n} \right) \left(\sum_{l=1}^{k} E_{il} \otimes S_{km+l} \right) \left(E_{iq} \otimes I_{O_n} \right)$$

$$= \left(\sum_{j=1}^{n/k} T_{kj+p} T_{kj+i}^* \right) T_{km+i} \left(\sum_{j=1}^{n/k} T_{kj+i} T_{kj+q}^* \right)$$

and the proof is complete.

Finally, we can extend the above result. In this case, we allow k to be greater than n. This leads to the following corollary.

Corollary 6. Let k and n be positive integers such that every prime factor of k divides n. Then $M_k(O_n)$ is isomorphic to O_n .

Proof. Suppose that $k = p_m p_{m-1} \cdots p_1$ is the prime factorization of k. We observe that

$$M_k(O_n) \cong M_{p_m}(M_{p_{m-1}}(\cdots (M_{p_2}(M_{p_1}(O_n))))).$$

Since p_i divides n for i = 1, ..., m, it follows from the previous theorem that

$$M_{p_1}(O_n) \cong O_n$$
.

Therefore, by induction on m, we obtain the desired result.

Acknowledgement

The author gratefully acknowledges the financial support provided by Institut Teknologi Bandung under Contract No. 616AO/IT1.C02/KU/2024, associated with the project FMIPA.PPMI-KK-PN-09-2024. This support was instrumental in the successful completion of this research.

References

- [1] J. Cuntz, Simple C*-algebras generated by isometries. Comm. Math. Phys. **57(2)**, 173–185 (1977). https://doi.org/10.1007/BF01625776
- [2] M. Izumi, A Cuntz Algebra Approach to the Classification of Near-Group Categories. **arXiv** (2015). https://doi.org/10.48550/arxiv.1512.04288
- [3] D. E. Dutkay, N. Christoffersen, Representations of Cuntz Algebras Associated to Random Walks on Graphs. arXiv.org (2020). https://arxiv.org/abs/2009.10686
- [4] S. Liu, X. Fang, Extension Algebras of Cuntz Algebra. **Journal of Mathematical Analysis and Applications 329(1)**, 655–663 (2006). https://doi.org/10.1016/j.jmaa.2006.06.081
- [5] S. Liu, X. Fang, Extension Algebras of Cuntz Algebra, II. Bulletin of the Australian Mathematical Society 80(1), 83–90 (2009). https://doi.org/10.1017/s0004972709000227
- [6] D. G. Evans, A. Sims, When is the Cuntz–Krieger Algebra of a Higher-Rank Graph Approximately Finite-Dimensional? **Journal of Functional Analysis 263(1)**, 183–215 (2012). https://doi.org/10.1016/j.jfa.2012.03.024
- [7] M.-D. Choi, F. Latrémolière, Symmetry in the Cuntz Algebra on Two Generators. **Journal of Mathematical Analysis and Applications 387(2)**, 1050–1060 (2012). https://doi.org/10.1016/j.jmaa.2011.10.008
- [8] M. Abe, K. Kawamura, Branching Laws for Endomorphisms of Fermions and the Cuntz Algebra O_2 . **Journal of Mathematical Physics 49(4)**, 043501 (2008). https://doi.org/10. 1063/1.2839921
- [9] K. R. Davidson, C*-algebras by Example (American Mathematical Society, 1996)
- [10] G. J. Murphy, *C*-Algebras and Operator Theory* (Elsevier, 1990), https://doi.org/10. 1016/c2009-0-22289-6.
- [11] K. Kawamura, Universal Algebra of Sectors. International Journal of Algebra and Computation 19(03), 347-371 (2009). https://doi:10.1142/s0218196709005172
- [12] I. Raeburn, D.P. Williams, *Morita Equivalence and Continuous-Trace C*-Algebras* (American Mathematical Soc., 1998)