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Abstract. Starting with a Cuntz algebra On constructed by n isometries, we
discuss a C∗-algebra consisting of elements of a fixed size k square matrix,
where the entries of matrix are from the Cuntz algebra On. It is surprising
to find that if k divides n, the resulting C∗-algebra of matrix is isomorphic to
the Cuntz algebra On. We extend this result to cases where k is larger than n,
showing that the same conclusion holds provided that every prime factor of k
divides n.

1 Introduction

Suppose we have a Hilbert space H over the complex numbers C. The set B(H) of all bounded
linear operators on H forms a normed vector space over C. Additionally, we can define a
multiplication operation on this set through the composition of two operators. With these two
operations, addition and multiplication, the set B(H) acquires an algebraic structure known
as a normed algebra.

As an algebra, B(H) doesn’t form a field, which is different with the set of complex or real
numbers. Nevertheless, similar to forming matrices with real or complex number elements,
we can consider matrices whose elements come from a subalgebra in B(H).

We need a structure that is more specific than just a subalgebra, as it also requires an
involution operation. In B(H), this involution is represented by the adjoint operator. We will
consider a subalgebra constructed from n isometries that is closed under involution. This is
known as the Cuntz algebra (see [1]).

The Cuntz algebra has emerged as a fascinating topic in the field of operator algebras, at-
tracting significant attention from researchers in recent years. Several studies have explored
its diverse properties and applications, contributing to a deeper understanding of its structure
and significance. For instance, [2] investigated the classification of near-group categories us-
ing a Cuntz algebra approach, providing a novel perspective on its categorical framework. [3]
examined representations of Cuntz algebras associated with random walks on graphs, estab-
lishing connections between operator algebras and probability theory. [4, 5] made substan-
tial contributions by studying extension algebras of Cuntz algebras, revealing their intricate
algebraic properties and extensions. [6] analyzed the conditions under which the Cuntz–
Krieger algebra of a higher-rank graph becomes approximately finite-dimensional, bridging
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graph theory and operator algebras. Additionally, [7] explored symmetry properties in the
Cuntz algebra on two generators, while [8] investigated branching laws for endomorphisms
of fermions and their relationship with the Cuntz algebra O2. These studies collectively high-
light the versatility and richness of Cuntz algebras, underscoring their importance in both
theoretical and applied mathematics.

In this paper, we examine a C∗-algebra constructed from k × k matrices whose entries
are elements of the Cuntz algebra On. We show that when k divides n, the resulting algebra
exhibits a structure similar to the Cuntz algebra itself. Moreover, we extend this result by
demonstrating that the matrix size k can be larger than n, provided that all prime factors of k
divide n (see Corollary 6). This finding broadens the known constraints on k and refines the
relationship between matrix algebras and Cuntz algebras, contrasting with the classical case
of matrices over the complex numbers.

2 Discussion

We consider an abstraction of the structure of the set of all bounded linear operators on a
Hilbert space H. A set B is called an algebra over the complex numbers C if B is a vector
space over C, and it is equipped with an associative multiplication operation, i.e., for every
X,Y ∈ B, then XY ∈ B.

As in B(H), the algebraB can also be equipped with a norm ∥ · ∥, which is a function from
B to the real numbers satisfying the following properties:

1. Non-negativity and Definiteness: For every X ∈ B,

∥X∥ ≥ 0, and ∥X∥ = 0 if and only if X = 0.

2. Scalar Multiplication: For every α ∈ C and X ∈ B,

∥αX∥ = |α|∥X∥.

3. Subadditivity (Triangle Inequality): For every X,Y ∈ B,

∥X + Y∥ ≤ ∥X∥ + ∥Y∥.

4. Submultiplicativity: For every X,Y ∈ B,

∥XY∥ ≤ ∥X∥∥Y∥.

If the norm is complete, meaning that every Cauchy sequence in B converges, then B
is called a Banach algebra. We also define an involution on B, which is a map X 7→ X∗

for X ∈ B. This involution is compatible with the algebraic structure of B and satisfies the
following properties:

1. Involution Property: For every X ∈ B,

(X∗)∗ = X.

2. Antilinearity: For every X,Y ∈ B and every α ∈ C,

(αX + Y)∗ = αX∗ + Y∗.
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3. Multiplication Compatibility: For every X,Y ∈ B,

(XY)∗ = Y∗X∗.

A C∗-algebra B is defined as a Banach algebra with an involution ∗ that satisfies

∥X∗X∥ = ∥X∥2 for all X ∈ B.

If the C∗-algebra has a multiplicative identity element, it is called a unital C∗-algebra.
In the context of operators, we recognize an isometry S in B(H) as an operator that satis-

fies ∥S x∥ = ∥x∥ for every x ∈ H. This condition can be expressed as S ∗S = I. However, in
infinite dimensions, there exist isometries S such that S S ∗ is merely a projection. Following
Cuntz [1], we construct a subalgebra generated by a set of isometries with specific properties.

Definition 1. For natural number n ≥ 2, the Cuntz algebra On is the C∗-algebra generated
by isometries S 1, . . . , S n satisfying the relations:

n∑
i=1

S iS ∗i = I, and S ∗i S j = δi jI, (1)

where δi j is the Kronecker delta, and I is the multiplicative identity element.

In some literature ([9–11]), the Cuntz algebra is described as a universal algebra. How-
ever, this paper does not directly use that universal property.

The Cuntz algebra On is unique up to isomorphism. Consequently, if a C∗-algebra A
contains elements t1, . . . , tn that meet the condition in (1), then the ∗-homomorphism φ :
On → A that satisfies φ(s1) = t1, . . . , φ(sn) = tn is injective. This implies that the C∗-
subalgebra of A generated by t1, . . . , tn is isomorphic to On.

Next, we construct a C∗-algebra where the elements are matrices whose entries belong to
the Cuntz algebra On.

Definition 2. Let k be a natural number. The matrix algebra of k-square matrix over Cuntz
Algebra On is defined by the set

Mk(On) = {T | T is a k × k matrix with elements in On.}

As an example, one of the elements in M2(O3) is

T =
[
S 1 − 2iS 2S ∗1 4S 2S ∗1

S 1 S 3 + S 2
1

]
with {S 1, S 2, S 3} being the generators of O3 as in (1). Note that we can express T as follows:

T = S 1

[
1 0
1 0

]
+ (S 2S ∗1)

[
−2i 4
0 0

]
+ (S 3 + S 2

1)
[
0 0
0 1

]
.

Each element in the summation can be viewed as A ⊗ B, which is the tensor product of an
element A in M2(C) (a 2 × 2 matrix) and B an element in O3. Using the tensor product
notation, the element above can be written as:

T = (A1 ⊗ B1) + (A2 ⊗ B2) + (A3 ⊗ B3)

with A1 =

[
1 0
1 0

]
, A2 =

[
−2i 4
0 0

]
, A3 =

[
0 0
0 1

]
∈ M2(C) and B1 = S 1, B2 = S 2S ∗1, B3 =

S 3 + S 2
1 ∈ O3.

In general, we can conclude the following property:
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Proposition 3. Every T ∈ Mk(On) can be expressed as

T =
N∑

i=1

Ai ⊗ Bi, (2)

for some positive integer N, where Ai ∈ Mk(C) and Bi ∈ On for all i = 1, . . . ,N.

Proof. Let T ∈ Mk(On). Then there exist elements ti j ∈ On for 1 ≤ i, j ≤ k such that

T =


t11 · · · t1k
...
. . .

...
tk1 · · · tkk

 =
k∑

i=1

k∑
j=1

ti jEi j =

k∑
i=1

k∑
j=1

Ei j ⊗ ti j,

where Ei j is the elementary matrix that has 1 in the (i, j)-th entry and zeros elsewhere. □

The first step is to prove that Mk(On) is also a C∗-algebra. It is straightforward to see
that Mk(On) forms a vector space over the field C. The multiplication operation in Mk(On)
is defined using the standard matrix multiplication. For A,C ∈ Mk(C) and B,D ∈ On, the
multiplication operation is given by

(A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD),

where AC denotes the usual matrix multiplication, and BD is the product in On. Next, for
every A ∈ Mk(C) and B ∈ On, the involution of an element T = A ⊗ B ∈ Mk(On) is defined as

T ∗ = A∗ ⊗ B∗,

where A∗ denotes the conjugate transpose of the complex matrix A, and B∗ is the involution
in On. Furthermore, the norm of an element in Mk(On) is defined analogously to the operator
norm in a Hilbert space, given by∥∥∥∥∥∥∥∥∥∥


t11 · · · t1k
...
. . .

...
tk1 · · · tkk


∥∥∥∥∥∥∥∥∥∥ =
 sup

k∑
j=1
∥x j∥

2=1

k∑
i=1

∥∥∥∥∥∥∥∥
k∑

j=1

ti jx j

∥∥∥∥∥∥∥∥
2


1/2

,

where ti j, x j ∈ On for 1 ≤ i, j ≤ k (see [12], Appendix B).
Given that Mk(On) is a C∗-algebra, we choose a generating set for it, though not neces-

sarily a minimal one.

Lemma 4. Let n and k be natural numbers, and let S 1, S 2, . . . , S n be the isometries that
generate the Cuntz algebra On, i.e., the isometries satisfying (1). The set

{Ei j ⊗ S l | 1 ≤ i, j ≤ k, 1 ≤ l ≤ n} (3)

generates the C∗-algebra Mk(On).

Proof. Let A be the C∗-subalgebra generated by the set (3). Then, for 1 ≤ i, j ≤ k and
1 ≤ l ≤ n, we have

Ei j ⊗ S ∗l = (E ji ⊗ S l)∗ ∈ A.

This implies that

Ei j ⊗ IOn =

n∑
p=1

Ei j ⊗ S pS ∗p =
n∑

p=1

(Eii ⊗ S p)(Ei j ⊗ S ∗p) ∈ A.
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Meanwhile, since {E11 ⊗ S l}
n
l=1 ⊂ A and {S l}

n
l=1 generates On, it follows that for every t ∈ On,

E11 ⊗ t ∈ A.

Therefore, in view of the proof of Proposition 3, for every T ∈ Mk(On), we have

T =
k∑

i=1

k∑
j=1

Ei j ⊗ ti j =

k∑
i=1

k∑
j=1

(Ei1 ⊗ IOn )(E11 ⊗ ti j)(E1 j ⊗ IOn ) ∈ A.

Thus, the proof is complete. □

Surprisingly, Mk(On) is isomorphic to On itself as long as k divides n.

Theorem 5. Let n, k be natural numbers. If k divides n, then Mk(On) is isomorphic to On.

Proof. First, we will construct the generator of Mk(On). For 0 ≤ j < n/k and 1 ≤ i ≤ k, we
define matrices

Tk j+i =

k∑
l=1

Eil ⊗ S k j+l

where Eil is a matrix unit, and S k j+l is the element in equation (1). It will be shown that

k∑
i=1

n/k∑
j=1

Tk j+iT ∗k j+i = I.

To do this, we compute:

k∑
i=1

n/k∑
j=1

Tk j+iT ∗k j+i =

k∑
i=1

n/k∑
j=1

 k∑
l=1

Eil ⊗ S k j+l


 k∑

l=1

Eil ⊗ S k j+l


∗

=

k∑
i=1

n/k∑
j=1

 k∑
l=1

Eil ⊗ S k j+l


 k∑

m=1

E∗im ⊗ S ∗k j+m


=

k∑
i=1

n/k∑
j=1

k∑
l=1

k∑
m=1

(
EilE∗im

)
⊗
(
S k j+lS ∗k j+m

)
=

k∑
i=1

Eii ⊗

 n/k∑
j=1

k∑
l=1

S k j+lS ∗k j+l


= IMk(C) ⊗ IOn = IMk(On).

Next, we show that Tk j+i is an isometry. To do this, we compute:

T ∗k j+iTk j+i =

 k∑
l=1

E∗il ⊗ S ∗k j+l


 k∑

l=1

Eil ⊗ S k j+l


=

k∑
l=1

Ell ⊗ S ∗k j+lS k j+l

=

k∑
l=1

Ell ⊗ IOn = IMk(C) ⊗ IOn = IMk(On).

5

ITM Web of Conferences 75, 03002 (2025)
ICONMAA 2024

https://doi.org/10.1051/itmconf/20257503002



At this point, we have shown that the C∗-subalgebra of Mk(On) generated by {Tl}
n
l=1 is

isomorphic to the Cuntz algebra On. Now, we only need to show that {Tl}
n
l=1 spans the en-

tire Mk(On). To do this, we demonstrate that each element in the generating set (3) can be
constructed using {Tl}

n
l=1. The key result needed for this final step is the following expression:

n/k∑
j=1

Tk j+pT ∗k j+q =

n/k∑
j=1

 k∑
l=1

Epl ⊗ S k j+l


 k∑

l=1

Eql ⊗ S k j+l


∗

=

n/k∑
j=1

 k∑
l=1

Epl ⊗ S k j+l


 k∑

m=1

E∗qm ⊗ S ∗k j+m


Using the multiplication operation, we obtain:

n/k∑
j=1

Tk j+pT ∗k j+q =

n/k∑
j=1

k∑
l=1

k∑
m=1

EplEmq ⊗ (S k j+lS ∗k j+m)

=

n/k∑
j=1

k∑
l=1

Epq ⊗
(
S k j+lS ∗k j+l

)
= Epq ⊗

 n/k∑
j=1

k∑
l=1

S k j+lS ∗k j+l


= Epq ⊗ IOn .

Thus, for any 1 ≤ p, q, i ≤ k and 0 ≤ m ≤ n/k, we have

Epq ⊗ S km+i =

k∑
l=1

(
EpiEilEiq

)
⊗
(
IOn S km+lIOn

)
=
(
Epi ⊗ IOn

)  k∑
l=1

Eil ⊗ S km+l

 (Eiq ⊗ IOn

)
=

 n/k∑
j=1

Tk j+pT ∗k j+i

Tkm+i

 n/k∑
j=1

Tk j+iT ∗k j+q


and the proof is complete. □

Finally, we can extend the above result. In this case, we allow k to be greater than n. This
leads to the following corollary.

Corollary 6. Let k and n be positive integers such that every prime factor of k divides n.
Then Mk(On) is isomorphic to On.

Proof. Suppose that k = pm pm−1 · · · p1 is the prime factorization of k. We observe that

Mk(On) � Mpm (Mpm−1 (· · · (Mp2 (Mp1 (On))))).

Since pi divides n for i = 1, . . . ,m, it follows from the previous theorem that

Mp1 (On) � On.

Therefore, by induction on m, we obtain the desired result.
□
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