Open Access
Issue
ITM Web Conf.
Volume 78, 2025
International Conference on Computer Science and Electronic Information Technology (CSEIT 2025)
Article Number 01002
Number of page(s) 11
Section Deep Learning and Reinforcement Learning – Theories and Applications
DOI https://doi.org/10.1051/itmconf/20257801002
Published online 08 September 2025
  1. Mnih, V., Kavukcuoglu, K., Silver, D., et al.: 'Human-level control through deep reinforcement learning', Nature, 2015, 518, (7540), pp. 529–533 [NASA ADS] [CrossRef] [Google Scholar]
  2. Wang, J., Perez, L.: 'The effectiveness of data augmentation in image classification using deep learning', Convolutional Neural Networks Vis. Recognit., 2017, 11, pp. 1–8 [Google Scholar]
  3. Wang, X., Wang, S., Liang, X., et al.: 'Deep reinforcement learning: A survey', IEEE Trans. Neural Netw. Learn. Syst., 2022, 35, (4), pp. 5064–5078 [Google Scholar]
  4. Awasthi, A.: 'Evaluating reinforcement learning algorithms for LunarLander-v2: A comparative analysis of DQN, DDQN, DDPG, and PPO', Research Square Preprint, 2025, Version 1 [Google Scholar]
  5. Laskin, M., Lee, K., Stooke, A., et al.: 'Reinforcement learning with augmented data', Adv. Neural Inf. Process. Syst., 2020, 33, pp. 19884–19895 [Google Scholar]
  6. Raileanu, R., Goldstein, M., Yarats, D., et al.: 'Automatic data augmentation for generalization in deep reinforcement learning', arXiv preprint, 2020, arXiv:2006.12862 [Google Scholar]
  7. Lyzhov, A., Molchanova, Y., Ashukha, A., et al.: 'Greedy policy search: A simple baseline for learnable test-time augmentation'. Proc. Conf. Uncertainty in Artificial Intelligence (UAI), August 14, pp. 1308 [Google Scholar]
  8. Kirk, R., Zhang, A., Grefenstette, E., et al.: 'A survey of generalisation in deep reinforcement learning', arXiv preprint, 2021, arXiv:2111.09794 [Google Scholar]
  9. Igl, M., Ciosek, K., Li, Y., et al.: 'Generalization in reinforcement learning with selective noise injection and information bottleneck', Adv. Neural Inf. Process. Syst., 2019, 32 [Google Scholar]
  10. Wang, J., Wang, Z., Li, H., et al.: 'Maximum entropy evolutionary reinforcement learning method based on adaptive noise', Acta Automatica Sinica, 2023, 49, (1), pp. 54–66 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.