Open Access
Issue
ITM Web Conf.
Volume 78, 2025
International Conference on Computer Science and Electronic Information Technology (CSEIT 2025)
Article Number 01011
Number of page(s) 8
Section Deep Learning and Reinforcement Learning – Theories and Applications
DOI https://doi.org/10.1051/itmconf/20257801011
Published online 08 September 2025
  1. Thabtah, F., Zhang, L., Abdelhamid, N.: 'NBA game result prediction using feature analysis and machine learning', Ann. Data Sci., 2019, 6, (1), pp. 103–116. [Google Scholar]
  2. Patrot, A., Harish, H., Shambbavi, B., et al.: 'NBA Game Prediction Using Machine Learning Algorithm', Proc. 2023 Int. Conf. Recent Trends Electronics Commun. (ICRTEC), IEEE, 2023, pp. 1–6 [Google Scholar]
  3. Wang, J.: 'Predictive Analysis of NBA Game Outcomes through Machine Learning', Proc. 6th Int. Conf. Machine Learning Machine Intell., 2023, pp. 46–55 [Google Scholar]
  4. Ouyang, Y., Li, X., Zhou, W., et al.: 'Integration of machine learning XGBoost and SHAP models for NBA game outcome prediction and quantitative analysis methodology', Plos One, 2024, 19, (7), e0307478. [Google Scholar]
  5. Qu, K.: 'Research on linear regression algorithm', MATEC Web Conf., EDP Sciences, 2024, 395, 01046. [Google Scholar]
  6. Radhakrishnan, A.: 'Lecture 2: Linear Regression', (2022-01-21), [EB/OL], accessed 27 Nov 2024. [Google Scholar]
  7. Kalra, V., Kashyap, I., Kaur, H.: 'Effect of distance measures on K-nearest neighbour classifier', Proc. 2022 2nd Int. Conf. Comput. Sci. Eng. Appl. (ICCSEA), IEEE, 2022, pp. 1–7 [Google Scholar]
  8. Kang, S.: 'K-nearest neighbor learning with graph neural networks', Mathematics, 2021, 9, (8), pp. 830. [Google Scholar]
  9. Rizki, M., Hermawan, A., Avianto, D.: 'Optimization of Hyperparameter K in K-Nearest Neighbor Using Particle Swarm Optimization', J. JUITA: Jurnal Informatika, 2024, 12, (1), pp. 71–79. [Google Scholar]
  10. Shen Z., Lei J., You Y.: 'Tennis Player Winning Prediction Based on Grid-Search Random Forest Algorithm', 2024 International Conference on Telecommunications and Power Electronics (TELEPE). IEEE, 2024: 560–563. [Google Scholar]
  11. Xiong, A.: 'Analysis of NBA player salary based on multiple linear regression model', Theor. Nat. Sci., 2024, 51, pp. 206–213 [Google Scholar]
  12. Yeung, M.: 'Multiple Machine Learning Algorithms-based NBA Team Playoffs Prediction', ITM Web Conf., EDP Sciences, 2025, 70, 04024. [Google Scholar]
  13. Cai, W., Yu, D., Wu, Z., et al.: 'A hybrid ensemble learning framework for basketball outcomes prediction', Physica A: Stat. Mech. Appl., 2019, 528, 121461. [Google Scholar]
  14. Goh, Y. L., Goh, Y. H., Bin, R. L. L., et al.: 'Predicting the performance of the players in NBA Players by divided regression analysis', Malays. J. Fundam. Appl. Sci., 2019, 15, (3), pp. 441–446. [Google Scholar]
  15. Pan, S., Yang, B., Song, Q.: 'A Short-term Time Series Predictive Algorithm Based on Rolling Prediction and PSO-SVR', Proc. 2024 IEEE 2nd Int. Conf. Control, Electron. Comput. Technol. (ICCECT), Jilin, China, 2024, pp. 1430–1434 [Google Scholar]
  16. Qi, X., Gao, Y., Li, Y., Li, M.: 'K-nearest Neighbors Regressor for Traffic Prediction of Rental Bikes', Proc. 2022 14th Int. Conf. Comput. Res. Dev. (ICCRD), Shenzhen, China, 14, pp. 152, doi: https://doi.org/10.1109/ICCRD544 09.2022.9730527. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.