Error
  • The authentification system partialy failed, sorry for the inconvenience. Please try again later.
Open Access
Issue
ITM Web Conf.
Volume 78, 2025
International Conference on Computer Science and Electronic Information Technology (CSEIT 2025)
Article Number 01031
Number of page(s) 11
Section Deep Learning and Reinforcement Learning – Theories and Applications
DOI https://doi.org/10.1051/itmconf/20257801031
Published online 08 September 2025
  1. Slivkins, A.: 'Introduction to multi-armed bandits', Foundations and Trends® in Machine Learning, 2019, 12, (1-2), pp. 1–286 [Google Scholar]
  2. Mahajan, A., Teneketzis, D.: 'Multi-armed bandit problems', in 'Foundations and applications of sensor management' (Springer US, Boston, MA, 2008), pp. 121–151 [Google Scholar]
  3. Silva, N., Werneck, H., Silva, T., et al.: 'Multi-armed bandits in recommendation systems: A survey of the state-of-the-art and future directions', Expert Systems with Applications, 2022, 197, pp. 116669 [Google Scholar]
  4. Silva, N., Silva, T., Werneck, H., et al.: 'User cold-start problem in multi-armed bandits: when the first recommendations guide the user's experience', ACM Transactions on Recommender Systems, 2023, 1, (1), pp. 1–24 [Google Scholar]
  5. Elena, G., Milos, K., Eugene, I.: 'Survey of multiarmed bandit algorithms applied to recommendation systems', International Journal of Open Information Technologies, 2021, 9, (4), pp. 12–27 [Google Scholar]
  6. Chou, K.C., Lin, H.T., Chiang, C.K., et al.: 'Pseudo-reward algorithms for contextual bandits with linear payoff functions'. Proc. Asian Conference on Machine Learning, PMLR, 2015, pp. 344–359 [Google Scholar]
  7. Fan, L., Glynn, P.W.: 'The fragility of optimized bandit algorithms', Operations Research, 2024 [Google Scholar]
  8. Lei, Y.: 'Comparative Evaluation of Mean Cumulative Regret in Multi-Armed Bandit Algorithms: ETC, UCB, Asymptotically Optimal UCB, and TS'. Proc. ITM Web of Conferences, 2025, pp. 01026 [Google Scholar]
  9. Yan, K.: 'Enhancing Exploration in Bandit Algorithms Through a Dynamically Modified Reinforcement Learning Approach'. Proc. 3rd Int. Conf. Computer, Artificial Intelligence and Control Engineering, 2024, pp. 263–266 [Google Scholar]
  10. Han, Q., Khamaru, K., Zhang, C.H.: 'UCB algorithms for multi-armed bandits: Precise regret and adaptive inference', arXiv preprint arXiv:2412.06126, 2024 [Google Scholar]
  11. Agrawal, S., Goyal, N.: 'Analysis of thompson sampling for the multi-armed bandit problem'. Proc. Conference on learning theory, JMLR Workshop and Conference Proceedings, 2012, pp. 39.1–39.26 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.