Open Access
| Issue |
ITM Web Conf.
Volume 78, 2025
International Conference on Computer Science and Electronic Information Technology (CSEIT 2025)
|
|
|---|---|---|
| Article Number | 01032 | |
| Number of page(s) | 11 | |
| Section | Deep Learning and Reinforcement Learning – Theories and Applications | |
| DOI | https://doi.org/10.1051/itmconf/20257801032 | |
| Published online | 08 September 2025 | |
- Bourne, J.E., Sauchelli, S., Perry, R., Page, A., Leary, S., England, C., and Cooper, A.R.: 'Health benefits of electrically-assisted cycling: a systematic review', Int. J. Behav. Nutr. Phys. Act., 2018, 15, pp. 1–15. [Google Scholar]
- Tarroja, B., Forrest, K., Yamada, K., Saha, R., and Hyland, M.: 'Estimating the Electricity System Benefits of Scaling up E-Bike Usage in California', J. Clean. Prod., 2025, (144840). [Google Scholar]
- Lou, L., Li, L., Yang, S.B., and Koh, J.: 'Promoting user participation of shared mobility in the sharing economy: Evidence from Chinese bike sharing services', Sustainability, 2021, 13, (3), pp. 1533. [CrossRef] [Google Scholar]
- Fu, C., Zhu, N., Pinedo, M., and Ma, S.: 'Station-based, free-float, or hybrid: An operating mode analysis of a bike-sharing system', Transp. Res. Part B Methodol., 2025, 191, pp. 103105. [Google Scholar]
- Luo, H., Kou, Z., Zhao, F., and Cai, H.: 'Comparative life cycle assessment of station-based and dock-less bike sharing systems', Resour. Conserv. Recycl., 2019, 146, pp. 180–189. [Google Scholar]
- Hua, M., Yu, X., Chen, X., Chen, J., and Cheng, L.: 'Can bike sharing achieve self-balancing distribution? Evidence from dockless and station-based cases', Travel Behav. Soc., 2025, 38, pp. 100879. [Google Scholar]
- Angelelli, E., Chiari, M., Mor, A., and Speranza, M.G.: 'A simulation framework for a station-based bike-sharing system', Comput. Ind. Eng., 2022, 171, pp. 108489. [Google Scholar]
- Jara-Díaz, S., Latournerie, A., Tirachini, A., and Quitral, F.: 'Optimal pricing and design of station-based bike-sharing systems: A microeconomic model', Econ. Transp., 2022, 31, pp. 100273. [Google Scholar]
- Silva, N., Werneck, H., Silva, T., Pereira, A.C., and Rocha, L.: 'Multi-armed bandits in recommendation systems: A survey of the state-of-the-art and future directions', Expert Syst. Appl., 2022, 197, pp. 116669. [CrossRef] [Google Scholar]
- Srikanth, A., Gowthaam, G., Gayathri, M., Goutham, D.T., Lakshana, C.R., and Lavaniya, H.: 'Dynamic personalized ads recommendation system using contextual bandits'. Proc. Int. Conf. Intelligent Systems for Communication, IoT and Security (ICISCoIS), Feb. 2023, pp. 339–344. [Google Scholar]
- Huo, X., and Fu, F.: 'Risk-aware multi-armed bandit problem with application to portfolio selection', R. Soc. Open Sci., 2017, 4, (11), pp. 171377. [Google Scholar]
- Şahin, Ü., Yücesoy, V., Koç, A., and TEKin, C.: 'Risk-averse ambulance redeployment via multi-armed bandits'. Proc. 26th Signal Processing and Communications Applications Conf. (SIU), May 2018, pp. 1–4. [Google Scholar]
- Trovo, F., Paladino, S., Restelli, M., and Gatti, N.: 'Sliding-window thompson sampling for non-stationary settings', J. Artif. Intell. Res., 2020, 68, pp. 311–364 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.

