Error
  • The authentification system partialy failed, sorry for the inconvenience. Please try again later.
Open Access
Issue
ITM Web Conf.
Volume 78, 2025
International Conference on Computer Science and Electronic Information Technology (CSEIT 2025)
Article Number 01036
Number of page(s) 12
Section Deep Learning and Reinforcement Learning – Theories and Applications
DOI https://doi.org/10.1051/itmconf/20257801036
Published online 08 September 2025
  1. Slivkins, A.: ‘Introduction to Multi-Armed Bandits’Foundations and Trends® in Machine Learning, 2019, 12, (1-2), pp. 1–286. [Google Scholar]
  2. Liu, Y., Roy, V., Xu, K.: ‘A Definition of Non-Stationary Bandits’arXiv (Cornell University), 2023. [Google Scholar]
  3. Trovo, F., Paladino, S., Restelli, M., Gatti, N.: ‘Sliding-Window Thompson Sampling for Non-Stationary Settings’Journal of Artificial Intelligence Research, 2020, 68, pp. 311–364. [Google Scholar]
  4. Liu, H.: ‘Comparative analysis of Sliding Window UCB and Discount Factor UCB in non-stationary environments: A Multi-Armed Bandit approach’Applied and Computational Engineering, 2024, 49, (1), pp. 136–141. [Google Scholar]
  5. Ghiye, A., Barreau, B., Carlier, L., Vazirgiannis, M.: ‘Adaptive Collaborative Filtering with Personalized Time Decay Functions for Financial Product Recommendation’ Proceedings of the 17th ACM Conference on Recommender Systems, 2023, pp. 798–804. [Google Scholar]
  6. Gigli, M., Stella, F.: ‘Multi-armed bandits for performance marketing’ International Journal of Data Science and Analytics, 2024. [Google Scholar]
  7. Xiang, D., West, R., Wang, J., Cui, X., Huang, J.: ‘Multi Armed Bandit vs. A/B Tests in E-commerce - Confidence Interval and Hypothesis Test Power Perspectives’ Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2022, pp. 4204–4214. [Google Scholar]
  8. Cunha, T., Marchini, A.: ‘A Hybrid Meta-Learning and Multi-Armed Bandit Approach for Context-Specific Multi-Objective Recommendation Optimization’arXiv (Cornell University), 2024. [Google Scholar]
  9. Deliu, N.: ‘Reinforcement learning for sequential decision making in population research’ Quality & Quantity, 2023, 58, (6), pp. 5057–5080. [Google Scholar]
  10. Bouneffouf, D., Claeys, E.: ‘Hyper-parameter Tuning for the Contextual Bandit’arXiv (Cornell University), 2020. [Google Scholar]
  11. Mnih, V., Kavukcuoglu, K., Silver, D., et al.: ‘Human-level Control through Deep Reinforcement Learning’ Nature, 2015, 518, (7540), pp. 529–533 [NASA ADS] [CrossRef] [Google Scholar]
  12. Harper, F.M., Konstan, J.A.: ‘The MovieLens Datasets’ ACM Transactions on Interactive Intelligent Systems, 2015, 5, (4), pp. 1–19. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.