Error
  • The authentification system partialy failed, sorry for the inconvenience. Please try again later.
Open Access
Issue
ITM Web Conf.
Volume 78, 2025
International Conference on Computer Science and Electronic Information Technology (CSEIT 2025)
Article Number 02014
Number of page(s) 12
Section Machine Learning Applications in Vision, Security, and Healthcare
DOI https://doi.org/10.1051/itmconf/20257802014
Published online 08 September 2025
  1. Sharif, M., Bhagavatula, S., Bauer, L., et al.: 'Accessorize to a crime: Real and stealthy attacks on state-of-the-art face recognition', in Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, 2016, pp. 1528–1540 [Google Scholar]
  2. Komkov, S., Petiushko, A.: 'AdvHat: Real-World Adversarial Attack on ArcFace Face ID System', in 25th International Conference on Pattern Recognition (ICPR), Milan, Italy, 2021, pp. 819–826 [Google Scholar]
  3. Goodfellow, I. J., Shlens, J., Szegedy, C.: 'Explaining and harnessing adversarial examples', arXiv preprint arXiv:1412.6572, 2014 [Google Scholar]
  4. Carlini, N., Wagner, D.: 'Towards Evaluating the Robustness of Neural Networks', in 2017 IEEE Symposium on Security and Privacy (SP), San Jose, CA, USA, 2017, pp. 39–57 [Google Scholar]
  5. Chen, P. Y., Sharma, Y., Zhang, H., et al.: 'EAD: Elastic-Net Attacks to Deep Neural Networks via Adversarial Examples', in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32, no. 1, 2018 [Google Scholar]
  6. Eykholt, K., Evtimov, I., Fernandes, E., et al.: 'Robust Physical-World Attacks on Deep Learning Models', in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018, pp. 1625–1634 [Google Scholar]
  7. Kurakin, A., Goodfellow, I. J., Bengio, S.: 'Adversarial examples in the physical world', arXiv preprint arXiv:1607.02533, 2016 [Google Scholar]
  8. Hu, C., Shi, T., Jiang, W., et al.: 'Adversarial Infrared Blocks: A Black-box Attack to Thermal Infrared Detectors at Multiple Angles in Physical World', in Proceedings of the ACM Conference on Computer and Communications Security (CCS), Washington, DC, USA, 2017, pp. 1–10 [Google Scholar]
  9. Madry, A., Makelov, A., Schmidt, L., et al.: 'Towards Deep Learning Models Resistant to Adversarial Attacks', in Proceedings of the 6th International Conference on Learning Representations (ICLR 2018), 2018 [Google Scholar]
  10. Chen, P. Y., Zhang, H., Sharma, Y., et al.: 'ZOO: Zeroth Order Optimization Based Black-box Attacks to Deep Neural Networks without Training Substitute Models', in Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security (AISec '17), New York, NY, USA, 2017, pp. 15–26 [Google Scholar]
  11. Zheng, W., Chen, Z., Lu, J. and Zhou, J.: ‘Hardness-aware deep metric learning.’ In CVPR, 2019 [Google Scholar]
  12. Wah, C., Branson, S., Welinder, P., Perona, P. and Belongie, S.: ‘The Caltech-UCSD Birds-200-2011 Dataset.’ Technical Report CNS-TR-2011-001, 2011 [Google Scholar]
  13. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L. and Desmaison, A.: ‘PyTorch: An imperative style, high-performance deep learning library.’ In NeurIPS, 2019 [Google Scholar]
  14. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M. and Berg, A. C.: ‘ImageNet large scale visual recognition challenge.’ IJCV, 2015 [Google Scholar]
  15. Kingma, D. P. and Ba, J.: ‘Adam: A method for stochastic optimization.’ In ICLR, 2015 [Google Scholar]
  16. Cui, Q., Huang, Q., Jiang, L., Li, B. and Metaxas, D.: ‘Fine-grained image retrieval via high-order collaborative representation learning.’ IEEE Transactions on Multimedia, 2020 [Google Scholar]
  17. Wang, Y., Li, S. and Chan, A. B.: ‘Deeply-learned attribute-aware ranking loss for fine-grained image retrieval.’ IEEE Transactions on Image Processing, 2020 [Google Scholar]
  18. Chen, L., Bentley, P. and Hua, C.: ‘Multi-scale hybrid collaborative learning network for fine-grained visual categorization.’ IEEE Transactions on Multimedia, 2021 [Google Scholar]
  19. Chen, Y., Bao, L. and Mei, T.: ‘Contrastive representation learning for fine-grained image retrieval.’ IEEE Transactions on Multimedia, 2022 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.