Open Access
Issue
ITM Web Conf.
Volume 78, 2025
International Conference on Computer Science and Electronic Information Technology (CSEIT 2025)
Article Number 02020
Number of page(s) 11
Section Machine Learning Applications in Vision, Security, and Healthcare
DOI https://doi.org/10.1051/itmconf/20257802020
Published online 08 September 2025
  1. Wang, Y., Ma, W., Zhang, M., Liu, Y., Ma, S.: ‘A survey on the fairness of recommender systems’, ACM Trans. Inf. Syst., 2023, 41, (3), pp. 1–43 [Google Scholar]
  2. Covington, P., Adams, J., Sargin, E.: ‘Deep neural networks for YouTube recommendations’, Proc. 10th ACM Conf. on Recommender Systems, Boston, MA, USA, Sept. 2016, pp. 191–198 [Google Scholar]
  3. Paranjape, V., Nihalani, N., Mishra, N.: ‘Design and development of a demographic-based movie recommender system using hybrid ML techniques’, Int. J. Comput. Commun. Control, 2024, 19, (4) [Google Scholar]
  4. Hu, Y., Koren, Y., Volinsky, C.: ‘Collaborative filtering for implicit feedback datasets’, Proc. 8th IEEE Int. Conf. on Data Mining, Pisa, Italy, Dec. 2008, pp. 263–272 [Google Scholar]
  5. Gomez-Uribe, C.A., Hunt, N.: ‘The Netflix recommender system: Algorithms, business value, and innovation’, ACM Trans. Manage. Inf. Syst., 2015, 6, (4), pp. 1–19 [Google Scholar]
  6. Ekstrand, M.D., Tian, M., Azpiazu, I.M., Ekstrand, J.D., Anuyah, O., McNeill, D., et al.: ‘All the cool kids, how do they fit in?: Popularity and demographic biases in recommender evaluation’, Proc. Conf. on Fairness, Accountability and Transparency (FAT*), New York, USA, Jan. 2018, pp. 172–186 [Google Scholar]
  7. Mehta, S.: ‘Concept drift in streaming data classification: Algorithms, platforms and issues’, Procedia Comput. Sci., 2017, 122, pp. 804–811 [Google Scholar]
  8. Steck, H., Baltrunas, L., Elahi, E., Liang, D., Raimond, Y., Basilico, J.: ‘Deep learning for recommender systems: A Netflix case study’, AI Mag., 2021, 42, (3), pp. 7–18 [Google Scholar]
  9. Yin, L.J., Safar, N.Z.M., Kamaludin, H., Abdullah, N., Yusof, M.A.M., Supriyanto, C.: ‘Adopting machine learning in demographic filtering for movie recommendation systems’, J. Soft Comput. Data Min., 2023, 4, (1), pp. 1–12 [Google Scholar]
  10. Lee, J.Y., Safar, N.Z.M.: ‘Research on the demographic filtering machine learning in movie recommendation system’, Appl. Inf. Technol. Comput. Sci., 2023, 4, (1), pp. 290–307 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.