Error
  • The authentification system partialy failed, sorry for the inconvenience. Please try again later.
Open Access
Issue
ITM Web Conf.
Volume 78, 2025
International Conference on Computer Science and Electronic Information Technology (CSEIT 2025)
Article Number 03018
Number of page(s) 9
Section Intelligent Systems and Computing in Industry, Robotics, and Smart Infrastructure
DOI https://doi.org/10.1051/itmconf/20257803018
Published online 08 September 2025
  1. H. Zhang, K. Wang and F. Wang, "Deep Learning in Target Vision Detection: Progress and Outlook," Acta Automatica Sinica, vol. 43, no. 8, pp. 1289–1305, 2017. [Google Scholar]
  2. A. Krizhevsky, I. Sutskever and G. E. Hinton, "Imagenet classification with deep convolutional neural networks," Advances in Neural Information Processing Systems, vol. 25, pp. 1097–1105, 2012. [Google Scholar]
  3. N. Dalal and B. Triggs, "Histograms of oriented gradients for human detection," 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), San Diego, CA, USA, 2005, pp. 886–893 vol. 1. [Google Scholar]
  4. P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, Y. LeCun, "OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks," arXiv:1312.6229. [Google Scholar]
  5. P. F. Felzenszwalb, R. B. Girshick, D. McAllester and D. Ramanan, "Object Detection with Discriminatively Trained Part-Based Models," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 32, no. 9, pp. 1627–1645, Sept. 2010. [CrossRef] [Google Scholar]
  6. C. L. Zitnick and P. Dollár, "Edge Boxes: Locating Object Proposals from Edges," in Computer Vision - ECCV 2014, D. Fleet, T. Pajdla, B. Schiele, T. Tuytelaars, Eds. Cham: Springer, 2014, pp. 391–405. [Google Scholar]
  7. S. Ren, K. He, R. Girshick and J. Sun, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks," arXiv:1506.01497. [Google Scholar]
  8. J. Canny, "A Computational Approach to Edge Detection," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-8, no. 6, pp. 679–698, Nov. 1986. [CrossRef] [Google Scholar]
  9. D. G. Lowe, "Distinctive Image Features from Scale-Invariant Keypoints," International Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, 2004. [CrossRef] [Google Scholar]
  10. T. Ojala, M. Pietikäinen, D. Harwood, "A comparative study of texture measures with classification based on featured distributions," Pattern Recognition, vol. 29, pp. 51–59, 1996. [CrossRef] [Google Scholar]
  11. T. Ojala, M. Pietikäinen, T. Maenpaa, "Multiresolution gray-scale and rotation invariant texture classification with local binary patterns," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 7, pp. 971–987, July 2002. [CrossRef] [Google Scholar]
  12. S. Lazebnik, C. Schmid, J. Ponce, "Beyond bags of features: spatial pyramid matching for recognizing natural scene categories," in Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), New York, NY, USA: IEEE, 2006, pp. 2169–2178. [Google Scholar]
  13. K. He, X. Zhang, S. Ren, J. Sun, "Deep Residual Learning for Image Recognition," arXiv:1512.03385. [Google Scholar]
  14. M. Tan and Q. V. Le, "EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks," arXiv:1905.11946. [Google Scholar]
  15. S. Zhang, C. Chi, Y. Yao, Z. Lei, S. Z. Li, "Bridging the Gap Between Anchor-based and Anchor-free Detection via Adaptive Training Sample Selection," arXiv:1912.02424. [Google Scholar]
  16. A. Mousavian, D. Anguelov, J. Flynn, and J. Košecká, "3D bounding box estimation using deep learning and geometry," 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5632–5640, 2017. [Google Scholar]
  17. S. Song and J. Xiao, "Deep sliding shapes for amodal 3D object detection in RGB-D images," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 808–816, 2016. [Google Scholar]
  18. C. R. Qi, W. Liu, C. Wu, H. Su, and L. J. Guibas, "Frustum PointNets for 3D Object Detection from RGB-D Data," arXiv:1711.08488. [Google Scholar]
  19. S. Shi, X. Wang, H. Li, "PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud," arXiv:1812.04244 [cs.CV]. [Google Scholar]
  20. Y. Zhou, O. Tuzel, "VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection," arXiv:1711.06396. [Google Scholar]
  21. A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, O. Beijbom, "PointPillars: Fast Encoders for Object Detection from Point Clouds," arXiv:1812.05784 [cs.LG]. [Google Scholar]
  22. S. Shi, C. Guo, L. Jiang, Z. Wang, J. Shi, X. Wang, H. Li, "PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection," arXiv:1912.13192 [cs.CV]. [Google Scholar]
  23. Z. Liu, Y. Shen, V. B. Lakshminarasimhan, P. P. Liang, A. Zadeh, L.-P. Morency, "Efficient Low-rank Multimodal Fusion with Modality-Specific Factors," arXiv:1806.00064. [Google Scholar]
  24. W. Dong, H. Zhu, S. Lin, X. Luo, Y. Shen, X. Liu, J. Zhang, G. Guo, B. Zhang, "Fusion-Mamba for Cross-modality Object Detection," arXiv:2404.09146. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.