Open Access
| Issue |
ITM Web Conf.
Volume 78, 2025
International Conference on Computer Science and Electronic Information Technology (CSEIT 2025)
|
|
|---|---|---|
| Article Number | 04008 | |
| Number of page(s) | 12 | |
| Section | Foundations and Frontiers in Multimodal AI, Large Models, and Generative Technologies | |
| DOI | https://doi.org/10.1051/itmconf/20257804008 | |
| Published online | 08 September 2025 | |
- Raveendran, S., Patil, M.D., & Birajdar, G.K.: ‘Underwater image enhancement: a comprehensive review, recent trends, challenges and applications.’ Artificial Intelligence Review, 2021, 54, 5413–5467 [CrossRef] [Google Scholar]
- He, K., Sun, J., & Tang, X.: ‘Single image haze removal using dark channel prior’. IEEE transactions on pattern analysis and machine intelligence, 2010, 33(12), 2341–2353 [Google Scholar]
- Li, J., Skinner, K. A., Eustice, R. M., & Johnson-Roberson, M.: ‘WaterGAN: Unsupervised generative network to enable real-time color correction of monocular underwater images.’ IEEE robotics and automation letters, 2017, 3(1), 387–394 [Google Scholar]
- Wang, N., Zhou, Y., Han, F., Zhu, H., & Yao, J.: ‘UWGAN: Underwater GAN for real-world underwater color restoration and dehazing.’ 2019, arXiv preprint arXiv: 1912.10269 [Google Scholar]
- Islam, M. J., Xia, Y., & Sattar, J.: ‘Fast underwater image enhancement for improved visual perception.’ IEEE Robotics and Automation Letters,2020, 5(2), 3227–3234 [CrossRef] [Google Scholar]
- Bakht, A. B., Jia, Z., Din, M. U., Akram, W., Saoud, L. S., Seneviratne, L., … & Hussain, I.: ‘Mula-gan: Multi-level attention gan for enhanced underwater visibility.’ Ecological Informatics, 2024, 81, 102631 [Google Scholar]
- Gonzalez-Sabbagh, S., Robles-Kelly, A., & Gao, S.: ‘DGD-cGAN: A dual generator for image dewatering and restoration.’ Pattern Recognition, 2024, 148, 110159 [Google Scholar]
- Xu, X. Z., Cai, Y. H., Liu, X. M., Liu, C. J., & Shen, L. S.: ‘Improved Gray World Color Correction Algorithm (Doctoral Dissertation).’ 2010 [Google Scholar]
- Chen, G., & Zhang, X.: ‘A Method to Improve Robustness of the Gray World Algorithm.’ 2015 [Google Scholar]
- Alex, R.S., Deepa, S., & Supriya, M.H.: ‘Underwater image enhancement using CLAHE in a reconfigurable platform.’ in OCEANS 2016 MTS/IEEE Monterey (pp. 1–5). IEEE. 2016 [Google Scholar]
- Li, H., Zhuang, P., Wei, W., & Li, J.: ‘Underwater image enhancement based on dehazing and color correction.’ in 2019 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/ SustainCom) (pp. 1365–1370). IEEE. 2019 [Google Scholar]
- Galdran, A., Pardo, D., Picón, A., & Alvarez-Gila, A.: ‘Automatic red-channel underwater image restoration.’ Journal of Visual Communication and Image Representation, 2015, 26, 132–145 [Google Scholar]
- Wang, Y., Song, W., Fortino, G., Qi, L. Z., Zhang, W., & Liotta, A.: ‘An experimental-based review of image enhancement and image restoration methods for underwater imaging.’ ieee access, 2019, 7, 140233–140251 [Google Scholar]
- Ancuti, C. O., Ancuti, C., De Vleeschouwer, C., & Bekaert, P.: ‘Color balance and fusion for underwater image enhancement.’ IEEE Transactions on image processing, 2017, 27(1), 379–393 [Google Scholar]
- Ronneberger, O., Fischer, P., & Brox, T.: ‘U-net: Convolutional networks for biomedical image segmentation.’ in Medical image computing and computer-assisted intervention- MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18 (pp. 234–241). Springer international publishing[15] [Google Scholar]
- Isola, P., Zhu, J. Y., Zhou, T., & Efros, A. A.: ‘Image-to-image translation with conditional adversarial networks.’ in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, (pp. 1125–1134). [Google Scholar]
- Mirza, M., & Osindero, S.: ‘Conditional generative adversarial nets.’ arXiv preprint arXiv: 1411.1784. 2014 [Google Scholar]
- Yu, X., Qu, Y., & Hong, M.: ‘Underwater-GAN: Underwater image restoration via conditional generative adversarial network.’ in International conference on pattern recognition, 2018, (pp. 66–75) [Google Scholar]
- Emami, H., Aliabadi, M. M., Dong, M., & Chinnam, R. B.: ‘SPA-GAN: Spatial attention GAN for image-to-image translation.’ IEEE Transactions on Multimedia, 2020, 23, 391–401 [Google Scholar]
- Hu, J., Shen, L., & Sun, G.: ‘Squeeze-and-excitation networks.’ in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, (pp. 7132–7141) [Google Scholar]
- Simonyan, K., & Zisserman, A.: ‘Very deep convolutional networks for large-scale image recognition.’ 2014, arXiv preprint arXiv: 1409.1556 [Google Scholar]
- Gonzalez-Sabbagh, S., Robles-Kelly, A., & Gao, S.: ‘DGD-cGAN: A dual generator for image dewatering and restoration.’ Pattern Recognition, 2024, 148, 110159 [Google Scholar]
- Park, E. and Sim, J. Y.: ‘Underwater Image Restoration Using Geodesic Color Distance and Complete Image Formation Model,’ in IEEE Access, 2020, vol. 8, pp. 157918–157930, 2020 [Google Scholar]
- Li, C., Guo, C., Ren, W., Cong, R., Hou, J., Kwong, S., & Tao, D.: ‘An underwater image enhancement benchmark dataset and beyond.’ ieee transactions on image processing, 2019, 29, 4376–4389 [Google Scholar]
- Li, H., Li, J., & Wang, W.: ‘A fusion adversarial underwater image enhancement network with a public test dataset.’ arXiv preprint arXiv: 1906.06819. 2019 [Google Scholar]
- Hore, A., & Ziou, D.: ‘Image quality metrics: PSNR vs. SSIM.’ in 2010 20th international conference on pattern recognition 2010, (pp. 2366–2369). IEEE. 2010 [Google Scholar]
- Panetta, K., Gao, C., & Agaian, S.: ‘Human-visual-system-inspired underwater image quality measures.’ IEEE Journal of Oceanic Engineering, 2015, 41(3), 541–551 [Google Scholar]
- Yang, M., & Sowmya, A.: ‘An underwater color image quality evaluation metric.’ IEEE Transactions on Image Processing, 2015, 24(12), 6062–6071 [CrossRef] [MathSciNet] [Google Scholar]
- Mittal, A., Soundararajan, R., & Bovik, A. C.: ‘Making a “completely blind” image quality analyzer.’ IEEE Signal processing letters, 2012, 20(3), 209–212 [Google Scholar]
- Singh, N., & Bhat, A.: ‘A detailed understanding of underwater image enhancement using deep learning.’ in 2021 5th International Conference on Information Systems and Computer Networks (ISCON), (pp. 1–6). IEEE. 2021 [Google Scholar]
- Qu, Y., Chen, Y., Huang, J., & Xie, Y.: ‘Enhanced pix2pix dehazing network.’ in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019, (pp. 8160–8168) [Google Scholar]
- Fabbri, C., Islam, M. J., & Sattar, J.: ‘Enhancing underwater imagery using generative adversarial networks.’ in 2018 IEEE international conference on robotics and automation (ICRA), (pp. 7159–7165). IEEE. 2018 [Google Scholar]
- Yan, H., Zhang, Z., Xu, J., Wang, T., An, P., Wang, A., & Duan, Y.: ‘UW-CycleGAN: Model-driven CycleGAN for underwater image restoration.’ IEEE Transactions on Geoscience and Remote Sensing, 2023, 61, 1–17 [CrossRef] [Google Scholar]
- Akkaynak, D., & Treibitz, T.: ‘Sea-thru: A method for removing water from underwater images.’ in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019, (pp. 1682–1691) [Google Scholar]
- Du, R., Li, W., Chen, S., Li, C., & Zhang, Y.: ‘Unpaired underwater image enhancement based on cyclegan.’ Information, 2021, 13(1), 1 [Google Scholar]
- Kurniawan, A., & Kurniawan, A.: ‘Introduction to nvidia jetson nano.’ IoT Projects with NVIDIA Jetson Nano: AI-Enabled Internet of Things Projects for Beginners, 1–6, 2021 [Google Scholar]
- Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., … Amodei, D.: ‘Language models are few-shot learners’. arXiv:2004.04634. 2020 [Google Scholar]
- Liu, P., Wang, G., Qi, H., Zhang, C., Zheng, H., & Yu, Z.: ‘Underwater image enhancement with a deep residual framework.’ ieee access, 2019, 7, 94614–94629 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.

