Open Access
| Issue |
ITM Web Conf.
Volume 79, 2025
International Conference on Knowledge Engineering and Information Systems (KEIS-2025)
|
|
|---|---|---|
| Article Number | 01011 | |
| Number of page(s) | 10 | |
| DOI | https://doi.org/10.1051/itmconf/20257901011 | |
| Published online | 08 October 2025 | |
- Ethnologue: Languages of the World, Kannada language profile (2023). https://www.ethnologue.com/language/kan [Google Scholar]
- D. Kakwani, A. Kunchukuttan, S. Golla, et. al, Indic- NLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages. in *Proc. EMNLP 2020: System Demonstrations*, pp. 494–501. ACL, 2020. https://aclanthology.org/2020.emnlp-demos.67 [Google Scholar]
- K. K. Sridhar, S. N. Sridhar, Language in education: Minorities and multilingualism in India. Int. Rev. Educ. 40, 279–293 (1994). https://www.jstor.org/stable/3444906 [Google Scholar]
- L. Besacier, A. Barnard, A. Karpov, T. Schultz, Automatic speech recognition for under-resourced languages: A survey. Speech Commun. 56, 85–100 (2014). https://doi.Org/10.1016/j.specom.2013.07.008 [Google Scholar]
- S. Witt, Automatic error detection in pronunciation training: Where we are and where we need to go. In Proc. IS ADEPT, 1–8 (2012). [Google Scholar]
- M. Yadav, A. Alam, Dynamic Time Warping (DTW) Algorithm in Speech: A Review. Int. J. Res. Electron. Comput. Eng. 6(1), 524–531 (2018) [Google Scholar]
- C. Richter, J. Guðnason, Relative dynamic time warping comparison for pronunciation errors. (2023) (to be published) [Google Scholar]
- S. Kanters, C. Cucchiarini, H. Strik, The Goodness of Pronunciation Algorithm: A Detailed Performance Study. In Proc. Interspeech (2009) [Google Scholar]
- J. Shi, N. Huo, Q. Jin, Context-Aware Goodness of Pronunciation for Computer-Assisted Pronunciation Training. In Proc. Interspeech (2020) [Google Scholar]
- X. Cao, Z. Fan, T. Svendsen et. al, An Analysis of Goodness of Pronunciation for Child Speech. In Proc. Interspeech (2023) [Google Scholar]
- J. Kraprayoon, A. Pham, T. Tsai, Improving the Robustness of DTW to Global Time Warping Conditions in Audio Synchronization (2024). https://doi.org/10.3390/app14041459 [Google Scholar]
- AI4Bharat, IndicWav2Vec. GitHub Repository. https://github.com/AI4Bharat/IndicWav2Vec [Google Scholar]
- A. Gupta, H. S. Chadha, P. Shah et al., CLSRIL-23: Cross-lingual Speech Representations for Indic Languages. In Proc. Interspeech (2021) [Google Scholar]
- H. S. Chadha, A. Gupta, P. Shah et al., Vakyansh: ASR Toolkit for Low Resource Indic Languages. In Proc. Interspeech (2022) [Google Scholar]
- A. Madhavaraj, B. Pilar, A. G. Ramakrishnan, Knowledge-driven Subword Grammar Modeling for Automatic Speech Recognition in Tamil and Kannada. In Proc. Interspeech (2022) [Google Scholar]
- M. McAuliffe, M. Socolof, S. Mihuc et. al, Montreal Forced Aligner: Trainable Text-Speech Alignment Using Kaldi. In Proc. Interspeech (2017) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.

