Error
  • The authentification system partialy failed, sorry for the inconvenience. Please try again later.
Open Access
Issue
ITM Web Conf.
Volume 79, 2025
International Conference on Knowledge Engineering and Information Systems (KEIS-2025)
Article Number 01013
Number of page(s) 5
DOI https://doi.org/10.1051/itmconf/20257901013
Published online 08 October 2025
  1. Z. Zhang, J. Wu, N. Lu, W. Shi, Z. Liu, AdaptPUD: An accurate URL-based detection approach against tailored deceptive phishing websites. Comput. Netw. 265, 111303 (2025). https://doi.org/10.1016/j.comnet.2025.111303 [Google Scholar]
  2. M.A. Rose, N. Basir, N.F. Heng, N.J. Zaizi, M.M. Saudi, Phishing detection and prevention using Chrome extension, 2022 10th International Symposium on Digital Forensics and Security (ISDFS), IEEE, Istanbul, Turkey, June 22 (2022), 1–6 [Google Scholar]
  3. E.S. El-Kenawy, M.M. Eid, H.L. Hussein, A.M. Osman, A.M. Elshewey. Optimized deep learning model using binary particle swarm optimization for phishing attack detection: A comparative study, Mesopotamian J. CyberSecurity. 5, 685–703 (2025). https://doi.org/10.58496/MJCS/2025/041 [Google Scholar]
  4. A. Safi, S. Singh. A systematic literature review on phishing website detection techniques, J. King Saud Univ. Comput. Inf. Sci. 35, 590–611(2023). https://doi.org/10.1016/j.jksuci.2023.01.004 [Google Scholar]
  5. I. Qabajeh, F. Thabtah, F. Chiclana, A recent review of conventional vs. automated cybersecurity antiphishing techniques, Comput. Sci. Rev. 29, 44–55 (2018). https://doi.org/10.1016/j.cosrev.2018.05.003 [Google Scholar]
  6. O.K. Sahingoz, E. Buber, O. Demir, B. Diri. Machine learning based phishing detection from URLs, Expert Syst. Appl. 117, 345–357 (2019). https://doi.org/10.1016/j.eswa.2018.09.029 [CrossRef] [Google Scholar]
  7. S. Salloum, T. Gaber, S. Vadera, K. Shaalan, A systematic literature review on phishing email detection using natural language processing techniques. IEEE Access 10, 65703–65727 (2022). https://doi.org/10.1109/ACCESS.2022.3183083 [Google Scholar]
  8. N.Q. Do, A. Selamat, O. Krejcar, E. Herrera-Viedma, H. Fujita, Deep learning for phishing detection: Taxonomy, current challenges and future directions. IEEE Access 10, 36429–36463(2022). https://doi.org/10.1109/ACCESS.2022.3151903 [Google Scholar]
  9. R. Alabdan, Phishing attacks survey: Types, vectors, and technical approaches. Future Internet 12, 168 (2020). https://doi.org/10.3390/fi12100168 [Google Scholar]
  10. A. Basit, M. Zafar, X. Liu, A.R. Javed, Z. Jalil, K. Kifayat, A comprehensive survey of AI-enabled phishing attacks detection techniques. Telecommun. Syst. 76, 139–154 (2021). https://doi.org/10.1007/s11235-020-00733-2 [Google Scholar]
  11. K.L. Chiew, K.S. Yong, C.L. Tan, A survey of phishing attacks: Their types, vectors and technical approaches. Expert Syst. Appl. 106, 1–20 (2018). https://doi.org/10.1016/j.eswa.2018.03.050 [Google Scholar]
  12. Y. Shen, Z. Yan, R. Kantola, Analysis on the acceptance of global trust management for unwanted traffic control based on game theory. Comput. Secur. 47, 3–25 (2014). https://doi.org/10.1016/j.cose.2014.03.010 [Google Scholar]
  13. L. Shahba, A. Heidary-Sharifabad, M. Mollahoseini Ardakani, Detection of fake web pages and phishing attacks with rabbit optimization algorithm. J. Supercomput. 81, 313 (2025). https://doi.org/10.1007/s11227-024-06658-w [Google Scholar]
  14. K.V. Deshpande, J.T. Singh, A systematic review on website phishing attack detection for online users. Int. J. Image Graph, 2750013 (2025). https://www.worldscientific.com/doi/abs/10.1142/S0219467827500136 [Google Scholar]
  15. V. Madhavan, G. P. Anand, S. Sridhar, Safe URL Detection with Privacy Using Machine Learning and Cryptography Techniques. 2025 3rd International Conference on Disruptive Technologies (ICDT), IEEE, Greater Noida, India, May 13 (2025), 321–326 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.