Issue |
ITM Web Conf.
Volume 12, 2017
The 4th Annual International Conference on Information Technology and Applications (ITA 2017)
|
|
---|---|---|
Article Number | 01013 | |
Number of page(s) | 6 | |
Section | Session 1: Robotics | |
DOI | https://doi.org/10.1051/itmconf/20171201013 | |
Published online | 05 September 2017 |
LSTM-Based Temperature Prediction for Hot-Axles of Locomotives
School of Software, Tsinghua University, Beijing, China
luocan14 mails.tsinghua.edu.cn
yangd15@mails.tsinghua.edu.cn
huangjin@tsinghua.edu.cn
dengyd@tsinghua.edu.cn
The reliability of locomotives plays a central role for the smooth operation of railway systems. Hot-axle failures are one of the most commonly found problems leading to locomotive accidents. Since the operating status of the locomotive axle bearings can be distinctly reflected by the axle temperatures, online temperature monitoring has become an essential way to detect hot-axle failures. In this work, we explore the feasibility of predict the hot-axle failures by identifying the temperature from predicted nominal values. We propose a data-driven approach based on the Long Short-Term Memory (LSTM) network to predict the sensor temperature for axle bearings. The effectiveness of the prediction model was validated with operation data collected from commercial locomotives. With a prediction accuracy is within a few percent, the proposed techniques can be used as a dynamic reference for hot-axle monitoring.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.