Issue |
ITM Web Conf.
Volume 12, 2017
The 4th Annual International Conference on Information Technology and Applications (ITA 2017)
|
|
---|---|---|
Article Number | 04002 | |
Number of page(s) | 6 | |
Section | Session 4: Information Theory and Information Systems | |
DOI | https://doi.org/10.1051/itmconf/20171204002 | |
Published online | 05 September 2017 |
A Chinese Named Entity Recognition System with Neural Networks
National University of Defense Technology School of Computer Science, Changsha, Hunan, 410073, China
Named entity recognition (NER) is a typical sequential labeling problem that plays an important role in natural language processing (NLP) systems. In this paper, we discussed the details of applying a comprehensive model aggregating neural networks and conditional random field (CRF) on Chinese NER tasks, and how to discovery character level features when implement a NER system in word level. We compared the difference between Chinese and English when modeling the character embeddings. We developed a NER system based on our analysis, it works well on the ACE 2004 and SIGHAN bakeoff 2006 MSRA dataset, and doesn’t rely on any gazetteers or handcraft features. We obtained F1 score of 82.3% on MSRA 2006.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.