Issue |
ITM Web Conf.
Volume 22, 2018
The Third International Conference on Computational Mathematics and Engineering Sciences (CMES2018)
|
|
---|---|---|
Article Number | 01011 | |
Number of page(s) | 5 | |
DOI | https://doi.org/10.1051/itmconf/20182201011 | |
Published online | 17 October 2018 |
Four Point Implicit Methods for the Second Derivatives of the Solution of First Type Boundary Value Problem for One Dimensional Heat Equation
Department of Mathematics, Faculty of Arts and Sciences, Eastern Mediterranean University, Famagusta, North Cyprus, Via Mersin 10 Turkey
* Corresponding author: suzan.buranay@emu.edu.tr
We construct four-point implicit difference boundary value problem for the first derivative of the solution u(x,t) of the first type boundary value problem for one dimensional heat equation with respect to the time variable t. Also, for the second derivatives of u(x,t) special four-point implicit difference boundary value problems are proposed. It is assumed that the initial function belongs to the Hölder space C8+α,0 < α < 1, the heat source function given in the heat equation is from the Hölder space , the boundary functions are from
, and between the initial and the boundary functions the conjugation conditions of orders q = 0,1,2,3,4 are satisfied. We prove that the solution of the proposed difference schemes converge uniformly on the grids of the order O(h2+τ) (second order accurate in the spatial variable x and first order accurate in time t) where, h is the step size in x and τ is the step size in time. Theoretical results are justified by numerical examples.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.