Issue |
ITM Web Conf.
Volume 23, 2018
XLVIII Seminar of Applied Mathematics
|
|
---|---|---|
Article Number | 00030 | |
Number of page(s) | 6 | |
DOI | https://doi.org/10.1051/itmconf/20182300030 | |
Published online | 07 November 2018 |
Monitoring the Impact of Environmental Manipulation on Peatland Surface by Simple Remote Sensing Indices
Meteorology Department, Poznan University of Life Sciences, Piątkowska 94, 60-649 Poznań, Poland
* Corresponding author: anshu.rastogi@up.poznan.pl
The behaviour of nature depends on the different components of climates. Among these, temperature and rainfall are two of the most important components which are known to change plant productivity. Peatlands are among the most valuable ecosystems on the Earth, which is due to its high biodiversity, huge soil carbon storage, and its sensitivity to different environmental factors. With the rapid growth in industrialization, the climate change is becoming a big concern. Therefore, this work is focused on the behaviour of Sphagnum peatland in Poland, subjected to environment manipulation. Here it has been shown how a simple reflectance based technique can be used to assess the impact of climate change on peatland. The experimental setup consists of four plots with two kind of manipulations (control, warming, reduced precipitation, and a combination of warming and reduced precipitation). Reflectance data were measured twice in August 2017 under a clear sky. Vegetation indices (VIs) such as Normalized Difference Vegetation Index (NDVI), Photochemical Reflectance Index (PRI), near-infrared reflectance of vegetation (NIRv), MERIS terrestrial chlorophyll index (MTCI), Green chlorophyll index (CIgreen), Simple Ration (SR), and Water Band Index (WBI) were calculated to trace the impact of environmental manipulation on the plant community. Leaf Area Index of vascular plants was also measured for the purpose to correlate it with different VIs. The observation predicts that the global warming of 1°C may cause a significant change in peatland behaviour which can be tracked and monitored by simple remote sensing indices.
© The Authors, published by EDP Sciences, 2018
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.