Issue |
ITM Web Conf.
Volume 29, 2019
1st International Conference on Computational Methods and Applications in Engineering (ICCMAE 2018)
|
|
---|---|---|
Article Number | 02011 | |
Number of page(s) | 8 | |
Section | Computational Methods in Mechanical Engineering | |
DOI | https://doi.org/10.1051/itmconf/20192902011 | |
Published online | 15 October 2019 |
Modelling the cyclic response of structural steel for FEM analyses
1
Politehnica University of Timisoara, Department of Steel Structures and Structural Mechanics,
Timisoara,
Romania
2
Romanian Academy, Fundamental and Advanced Technical Research Centre,
Timisoara,
Romania
* Corresponding author: ciprian.zub@student.upt.ro
Modelling the cyclic response of structural steel plays an important role in the design and performance assessment of steel structures. Up to date, several mathematical models were developed to simulate metal plasticity, but only some of them were implemented in Finite Element Method (FEM) based software packages such as Abaqus, by using incremental plasticity procedures. Within this article, the “built-in” combined isotropic/kinematic hardening model is used to model metal plasticity under cyclic loading regime. A brief description of the constitutive model together with the calibration procedure of the material parameters based on experimental data are presented. Finite element analyseswere carried out on simplified FEM models to provide numerical predictions using the calibrated material parameters. Since the “built-in” combined model has several limitations (especially related to the isotropic component), adjustments of the material parameters were made to accommodate to different loading histories. The chosen material model and the calibrated input parameters are validated byanalysing the FEM predictions to be in good agreement with the experimental results with respect to cyclic behaviour and failure mode.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.